Step |
Hyp |
Ref |
Expression |
0 |
|
csubc |
⊢ Subcat |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ccat |
⊢ Cat |
3 |
|
vh |
⊢ ℎ |
4 |
3
|
cv |
⊢ ℎ |
5 |
|
cssc |
⊢ ⊆cat |
6 |
|
chomf |
⊢ Homf |
7 |
1
|
cv |
⊢ 𝑐 |
8 |
7 6
|
cfv |
⊢ ( Homf ‘ 𝑐 ) |
9 |
4 8 5
|
wbr |
⊢ ℎ ⊆cat ( Homf ‘ 𝑐 ) |
10 |
4
|
cdm |
⊢ dom ℎ |
11 |
10
|
cdm |
⊢ dom dom ℎ |
12 |
|
vs |
⊢ 𝑠 |
13 |
|
vx |
⊢ 𝑥 |
14 |
12
|
cv |
⊢ 𝑠 |
15 |
|
ccid |
⊢ Id |
16 |
7 15
|
cfv |
⊢ ( Id ‘ 𝑐 ) |
17 |
13
|
cv |
⊢ 𝑥 |
18 |
17 16
|
cfv |
⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
19 |
17 17 4
|
co |
⊢ ( 𝑥 ℎ 𝑥 ) |
20 |
18 19
|
wcel |
⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) |
21 |
|
vy |
⊢ 𝑦 |
22 |
|
vz |
⊢ 𝑧 |
23 |
|
vf |
⊢ 𝑓 |
24 |
21
|
cv |
⊢ 𝑦 |
25 |
17 24 4
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
26 |
|
vg |
⊢ 𝑔 |
27 |
22
|
cv |
⊢ 𝑧 |
28 |
24 27 4
|
co |
⊢ ( 𝑦 ℎ 𝑧 ) |
29 |
26
|
cv |
⊢ 𝑔 |
30 |
17 24
|
cop |
⊢ 〈 𝑥 , 𝑦 〉 |
31 |
|
cco |
⊢ comp |
32 |
7 31
|
cfv |
⊢ ( comp ‘ 𝑐 ) |
33 |
30 27 32
|
co |
⊢ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) |
34 |
23
|
cv |
⊢ 𝑓 |
35 |
29 34 33
|
co |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) |
36 |
17 27 4
|
co |
⊢ ( 𝑥 ℎ 𝑧 ) |
37 |
35 36
|
wcel |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
38 |
37 26 28
|
wral |
⊢ ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
39 |
38 23 25
|
wral |
⊢ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
40 |
39 22 14
|
wral |
⊢ ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
41 |
40 21 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
42 |
20 41
|
wa |
⊢ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
43 |
42 13 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
44 |
43 12 11
|
wsbc |
⊢ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
45 |
9 44
|
wa |
⊢ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) |
46 |
45 3
|
cab |
⊢ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } |
47 |
1 2 46
|
cmpt |
⊢ ( 𝑐 ∈ Cat ↦ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } ) |
48 |
0 47
|
wceq |
⊢ Subcat = ( 𝑐 ∈ Cat ↦ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } ) |