| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csubgr |
⊢ SubGraph |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
vg |
⊢ 𝑔 |
| 3 |
|
cvtx |
⊢ Vtx |
| 4 |
1
|
cv |
⊢ 𝑠 |
| 5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑠 ) |
| 6 |
2
|
cv |
⊢ 𝑔 |
| 7 |
6 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
| 8 |
5 7
|
wss |
⊢ ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) |
| 9 |
|
ciedg |
⊢ iEdg |
| 10 |
4 9
|
cfv |
⊢ ( iEdg ‘ 𝑠 ) |
| 11 |
6 9
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
| 12 |
10
|
cdm |
⊢ dom ( iEdg ‘ 𝑠 ) |
| 13 |
11 12
|
cres |
⊢ ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) |
| 14 |
10 13
|
wceq |
⊢ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) |
| 15 |
|
cedg |
⊢ Edg |
| 16 |
4 15
|
cfv |
⊢ ( Edg ‘ 𝑠 ) |
| 17 |
5
|
cpw |
⊢ 𝒫 ( Vtx ‘ 𝑠 ) |
| 18 |
16 17
|
wss |
⊢ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) |
| 19 |
8 14 18
|
w3a |
⊢ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) |
| 20 |
19 1 2
|
copab |
⊢ { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } |
| 21 |
0 20
|
wceq |
⊢ SubGraph = { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } |