Step |
Hyp |
Ref |
Expression |
0 |
|
csubgr |
⊢ SubGraph |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
vg |
⊢ 𝑔 |
3 |
|
cvtx |
⊢ Vtx |
4 |
1
|
cv |
⊢ 𝑠 |
5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑠 ) |
6 |
2
|
cv |
⊢ 𝑔 |
7 |
6 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
8 |
5 7
|
wss |
⊢ ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) |
9 |
|
ciedg |
⊢ iEdg |
10 |
4 9
|
cfv |
⊢ ( iEdg ‘ 𝑠 ) |
11 |
6 9
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
12 |
10
|
cdm |
⊢ dom ( iEdg ‘ 𝑠 ) |
13 |
11 12
|
cres |
⊢ ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) |
14 |
10 13
|
wceq |
⊢ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) |
15 |
|
cedg |
⊢ Edg |
16 |
4 15
|
cfv |
⊢ ( Edg ‘ 𝑠 ) |
17 |
5
|
cpw |
⊢ 𝒫 ( Vtx ‘ 𝑠 ) |
18 |
16 17
|
wss |
⊢ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) |
19 |
8 14 18
|
w3a |
⊢ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) |
20 |
19 1 2
|
copab |
⊢ { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } |
21 |
0 20
|
wceq |
⊢ SubGraph = { 〈 𝑠 , 𝑔 〉 ∣ ( ( Vtx ‘ 𝑠 ) ⊆ ( Vtx ‘ 𝑔 ) ∧ ( iEdg ‘ 𝑠 ) = ( ( iEdg ‘ 𝑔 ) ↾ dom ( iEdg ‘ 𝑠 ) ) ∧ ( Edg ‘ 𝑠 ) ⊆ 𝒫 ( Vtx ‘ 𝑠 ) ) } |