| Step |
Hyp |
Ref |
Expression |
| 0 |
|
csubmnd |
⊢ SubMnd |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
cmnd |
⊢ Mnd |
| 3 |
|
vt |
⊢ 𝑡 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑠 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑠 ) |
| 8 |
|
c0g |
⊢ 0g |
| 9 |
5 8
|
cfv |
⊢ ( 0g ‘ 𝑠 ) |
| 10 |
3
|
cv |
⊢ 𝑡 |
| 11 |
9 10
|
wcel |
⊢ ( 0g ‘ 𝑠 ) ∈ 𝑡 |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
vy |
⊢ 𝑦 |
| 14 |
12
|
cv |
⊢ 𝑥 |
| 15 |
|
cplusg |
⊢ +g |
| 16 |
5 15
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
| 17 |
13
|
cv |
⊢ 𝑦 |
| 18 |
14 17 16
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 19 |
18 10
|
wcel |
⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 20 |
19 13 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 21 |
20 12 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 22 |
11 21
|
wa |
⊢ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) |
| 23 |
22 3 7
|
crab |
⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } |
| 24 |
1 2 23
|
cmpt |
⊢ ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } ) |
| 25 |
0 24
|
wceq |
⊢ SubMnd = ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } ) |