Step |
Hyp |
Ref |
Expression |
0 |
|
vk |
⊢ 𝑘 |
1 |
|
cA |
⊢ 𝐴 |
2 |
|
cB |
⊢ 𝐵 |
3 |
1 2 0
|
csu |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 |
4 |
|
vx |
⊢ 𝑥 |
5 |
|
vm |
⊢ 𝑚 |
6 |
|
cz |
⊢ ℤ |
7 |
|
cuz |
⊢ ℤ≥ |
8 |
5
|
cv |
⊢ 𝑚 |
9 |
8 7
|
cfv |
⊢ ( ℤ≥ ‘ 𝑚 ) |
10 |
1 9
|
wss |
⊢ 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) |
11 |
|
caddc |
⊢ + |
12 |
|
vn |
⊢ 𝑛 |
13 |
12
|
cv |
⊢ 𝑛 |
14 |
13 1
|
wcel |
⊢ 𝑛 ∈ 𝐴 |
15 |
0 13 2
|
csb |
⊢ ⦋ 𝑛 / 𝑘 ⦌ 𝐵 |
16 |
|
cc0 |
⊢ 0 |
17 |
14 15 16
|
cif |
⊢ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) |
18 |
12 6 17
|
cmpt |
⊢ ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) |
19 |
11 18 8
|
cseq |
⊢ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) |
20 |
|
cli |
⊢ ⇝ |
21 |
4
|
cv |
⊢ 𝑥 |
22 |
19 21 20
|
wbr |
⊢ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 |
23 |
10 22
|
wa |
⊢ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
24 |
23 5 6
|
wrex |
⊢ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) |
25 |
|
cn |
⊢ ℕ |
26 |
|
vf |
⊢ 𝑓 |
27 |
26
|
cv |
⊢ 𝑓 |
28 |
|
c1 |
⊢ 1 |
29 |
|
cfz |
⊢ ... |
30 |
28 8 29
|
co |
⊢ ( 1 ... 𝑚 ) |
31 |
30 1 27
|
wf1o |
⊢ 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 |
32 |
13 27
|
cfv |
⊢ ( 𝑓 ‘ 𝑛 ) |
33 |
0 32 2
|
csb |
⊢ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 |
34 |
12 25 33
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
35 |
11 34 28
|
cseq |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
36 |
8 35
|
cfv |
⊢ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
37 |
21 36
|
wceq |
⊢ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) |
38 |
31 37
|
wa |
⊢ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
39 |
38 26
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
40 |
39 5 25
|
wrex |
⊢ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) |
41 |
24 40
|
wo |
⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) |
42 |
41 4
|
cio |
⊢ ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |
43 |
3 42
|
wceq |
⊢ Σ 𝑘 ∈ 𝐴 𝐵 = ( ℩ 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , ( 𝑛 ∈ ℤ ↦ if ( 𝑛 ∈ 𝐴 , ⦋ 𝑛 / 𝑘 ⦌ 𝐵 , 0 ) ) ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑚 ) ) ) ) |