Metamath Proof Explorer
Definition df-t1
Description: The class of all T_1 spaces, also called Fréchet spaces. Morris,
Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007)
|
|
Ref |
Expression |
|
Assertion |
df-t1 |
⊢ Fre = { 𝑥 ∈ Top ∣ ∀ 𝑎 ∈ ∪ 𝑥 { 𝑎 } ∈ ( Clsd ‘ 𝑥 ) } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
ct1 |
⊢ Fre |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
ctop |
⊢ Top |
3 |
|
va |
⊢ 𝑎 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
4
|
cuni |
⊢ ∪ 𝑥 |
6 |
3
|
cv |
⊢ 𝑎 |
7 |
6
|
csn |
⊢ { 𝑎 } |
8 |
|
ccld |
⊢ Clsd |
9 |
4 8
|
cfv |
⊢ ( Clsd ‘ 𝑥 ) |
10 |
7 9
|
wcel |
⊢ { 𝑎 } ∈ ( Clsd ‘ 𝑥 ) |
11 |
10 3 5
|
wral |
⊢ ∀ 𝑎 ∈ ∪ 𝑥 { 𝑎 } ∈ ( Clsd ‘ 𝑥 ) |
12 |
11 1 2
|
crab |
⊢ { 𝑥 ∈ Top ∣ ∀ 𝑎 ∈ ∪ 𝑥 { 𝑎 } ∈ ( Clsd ‘ 𝑥 ) } |
13 |
0 12
|
wceq |
⊢ Fre = { 𝑥 ∈ Top ∣ ∀ 𝑎 ∈ ∪ 𝑥 { 𝑎 } ∈ ( Clsd ‘ 𝑥 ) } |