Database
REAL AND COMPLEX NUMBERS
Elementary trigonometry
The exponential, sine, and cosine functions
df-tan
Metamath Proof Explorer
Description: Define the tangent function. We define it this way for cmpt , which
requires the form ( x e. A |-> B ) . (Contributed by Mario
Carneiro , 14-Mar-2014)
Ref
Expression
Assertion
df-tan
⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctan
⊢ tan
1
vx
⊢ 𝑥
2
ccos
⊢ cos
3
2
ccnv
⊢ ◡ cos
4
cc
⊢ ℂ
5
cc0
⊢ 0
6
5
csn
⊢ { 0 }
7
4 6
cdif
⊢ ( ℂ ∖ { 0 } )
8
3 7
cima
⊢ ( ◡ cos “ ( ℂ ∖ { 0 } ) )
9
csin
⊢ sin
10
1
cv
⊢ 𝑥
11
10 9
cfv
⊢ ( sin ‘ 𝑥 )
12
cdiv
⊢ /
13
10 2
cfv
⊢ ( cos ‘ 𝑥 )
14
11 13 12
co
⊢ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) )
15
1 8 14
cmpt
⊢ ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )
16
0 15
wceq
⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )