Metamath Proof Explorer


Definition df-tan

Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion df-tan tan = ( 𝑥 ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctan tan
1 vx 𝑥
2 ccos cos
3 2 ccnv cos
4 cc
5 cc0 0
6 5 csn { 0 }
7 4 6 cdif ( ℂ ∖ { 0 } )
8 3 7 cima ( cos “ ( ℂ ∖ { 0 } ) )
9 csin sin
10 1 cv 𝑥
11 10 9 cfv ( sin ‘ 𝑥 )
12 cdiv /
13 10 2 cfv ( cos ‘ 𝑥 )
14 11 13 12 co ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) )
15 1 8 14 cmpt ( 𝑥 ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )
16 0 15 wceq tan = ( 𝑥 ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )