Metamath Proof Explorer


Definition df-tc

Description: The transitive closure function. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion df-tc TC = ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ Tr 𝑦 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctc TC
1 vx 𝑥
2 cvv V
3 vy 𝑦
4 1 cv 𝑥
5 3 cv 𝑦
6 4 5 wss 𝑥𝑦
7 5 wtr Tr 𝑦
8 6 7 wa ( 𝑥𝑦 ∧ Tr 𝑦 )
9 8 3 cab { 𝑦 ∣ ( 𝑥𝑦 ∧ Tr 𝑦 ) }
10 9 cint { 𝑦 ∣ ( 𝑥𝑦 ∧ Tr 𝑦 ) }
11 1 2 10 cmpt ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ Tr 𝑦 ) } )
12 0 11 wceq TC = ( 𝑥 ∈ V ↦ { 𝑦 ∣ ( 𝑥𝑦 ∧ Tr 𝑦 ) } )