Step |
Hyp |
Ref |
Expression |
0 |
|
ctcph |
⊢ toℂPreHil |
1 |
|
vw |
⊢ 𝑤 |
2 |
|
cvv |
⊢ V |
3 |
1
|
cv |
⊢ 𝑤 |
4 |
|
ctng |
⊢ toNrmGrp |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
cbs |
⊢ Base |
7 |
3 6
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
8 |
|
csqrt |
⊢ √ |
9 |
5
|
cv |
⊢ 𝑥 |
10 |
|
cip |
⊢ ·𝑖 |
11 |
3 10
|
cfv |
⊢ ( ·𝑖 ‘ 𝑤 ) |
12 |
9 9 11
|
co |
⊢ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) |
13 |
12 8
|
cfv |
⊢ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) |
14 |
5 7 13
|
cmpt |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) |
15 |
3 14 4
|
co |
⊢ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) |
16 |
1 2 15
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |
17 |
0 16
|
wceq |
⊢ toℂPreHil = ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) |