Step |
Hyp |
Ref |
Expression |
0 |
|
cthinc |
⊢ ThinCat |
1 |
|
vc |
⊢ 𝑐 |
2 |
|
ccat |
⊢ Cat |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑐 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑐 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
chom |
⊢ Hom |
8 |
4 7
|
cfv |
⊢ ( Hom ‘ 𝑐 ) |
9 |
|
vh |
⊢ ℎ |
10 |
|
vx |
⊢ 𝑥 |
11 |
6
|
cv |
⊢ 𝑏 |
12 |
|
vy |
⊢ 𝑦 |
13 |
|
vf |
⊢ 𝑓 |
14 |
13
|
cv |
⊢ 𝑓 |
15 |
10
|
cv |
⊢ 𝑥 |
16 |
9
|
cv |
⊢ ℎ |
17 |
12
|
cv |
⊢ 𝑦 |
18 |
15 17 16
|
co |
⊢ ( 𝑥 ℎ 𝑦 ) |
19 |
14 18
|
wcel |
⊢ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
20 |
19 13
|
wmo |
⊢ ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
21 |
20 12 11
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
22 |
21 10 11
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
23 |
22 9 8
|
wsbc |
⊢ [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
24 |
23 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) |
25 |
24 1 2
|
crab |
⊢ { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) } |
26 |
0 25
|
wceq |
⊢ ThinCat = { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) } |