| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cthinc | ⊢ ThinCat | 
						
							| 1 |  | vc | ⊢ 𝑐 | 
						
							| 2 |  | ccat | ⊢ Cat | 
						
							| 3 |  | cbs | ⊢ Base | 
						
							| 4 | 1 | cv | ⊢ 𝑐 | 
						
							| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑐 ) | 
						
							| 6 |  | vb | ⊢ 𝑏 | 
						
							| 7 |  | chom | ⊢ Hom | 
						
							| 8 | 4 7 | cfv | ⊢ ( Hom  ‘ 𝑐 ) | 
						
							| 9 |  | vh | ⊢ ℎ | 
						
							| 10 |  | vx | ⊢ 𝑥 | 
						
							| 11 | 6 | cv | ⊢ 𝑏 | 
						
							| 12 |  | vy | ⊢ 𝑦 | 
						
							| 13 |  | vf | ⊢ 𝑓 | 
						
							| 14 | 13 | cv | ⊢ 𝑓 | 
						
							| 15 | 10 | cv | ⊢ 𝑥 | 
						
							| 16 | 9 | cv | ⊢ ℎ | 
						
							| 17 | 12 | cv | ⊢ 𝑦 | 
						
							| 18 | 15 17 16 | co | ⊢ ( 𝑥 ℎ 𝑦 ) | 
						
							| 19 | 14 18 | wcel | ⊢ 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 20 | 19 13 | wmo | ⊢ ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 21 | 20 12 11 | wral | ⊢ ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 22 | 21 10 11 | wral | ⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 23 | 22 9 8 | wsbc | ⊢ [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 24 | 23 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) | 
						
							| 25 | 24 1 2 | crab | ⊢ { 𝑐  ∈  Cat  ∣  [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) } | 
						
							| 26 | 0 25 | wceq | ⊢ ThinCat  =  { 𝑐  ∈  Cat  ∣  [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) } |