| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cthinc | 
							⊢ ThinCat  | 
						
						
							| 1 | 
							
								
							 | 
							vc | 
							⊢ 𝑐  | 
						
						
							| 2 | 
							
								
							 | 
							ccat | 
							⊢ Cat  | 
						
						
							| 3 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑐  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑐 )  | 
						
						
							| 6 | 
							
								
							 | 
							vb | 
							⊢ 𝑏  | 
						
						
							| 7 | 
							
								
							 | 
							chom | 
							⊢ Hom   | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							⊢ ( Hom  ‘ 𝑐 )  | 
						
						
							| 9 | 
							
								
							 | 
							vh | 
							⊢ ℎ  | 
						
						
							| 10 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 11 | 
							
								6
							 | 
							cv | 
							⊢ 𝑏  | 
						
						
							| 12 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 13 | 
							
								
							 | 
							vf | 
							⊢ 𝑓  | 
						
						
							| 14 | 
							
								13
							 | 
							cv | 
							⊢ 𝑓  | 
						
						
							| 15 | 
							
								10
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 16 | 
							
								9
							 | 
							cv | 
							⊢ ℎ  | 
						
						
							| 17 | 
							
								12
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 18 | 
							
								15 17 16
							 | 
							co | 
							⊢ ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							wcel | 
							⊢ 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 20 | 
							
								19 13
							 | 
							wmo | 
							⊢ ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 21 | 
							
								20 12 11
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 22 | 
							
								21 10 11
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 23 | 
							
								22 9 8
							 | 
							wsbc | 
							⊢ [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 24 | 
							
								23 6 5
							 | 
							wsbc | 
							⊢ [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 )  | 
						
						
							| 25 | 
							
								24 1 2
							 | 
							crab | 
							⊢ { 𝑐  ∈  Cat  ∣  [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) }  | 
						
						
							| 26 | 
							
								0 25
							 | 
							wceq | 
							⊢ ThinCat  =  { 𝑐  ∈  Cat  ∣  [ ( Base ‘ 𝑐 )  /  𝑏 ] [ ( Hom  ‘ 𝑐 )  /  ℎ ] ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ∃* 𝑓 𝑓  ∈  ( 𝑥 ℎ 𝑦 ) }  |