Metamath Proof Explorer


Definition df-thinc

Description: Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of Adamek p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024)

Ref Expression
Assertion df-thinc ThinCat = { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ]𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cthinc ThinCat
1 vc 𝑐
2 ccat Cat
3 cbs Base
4 1 cv 𝑐
5 4 3 cfv ( Base ‘ 𝑐 )
6 vb 𝑏
7 chom Hom
8 4 7 cfv ( Hom ‘ 𝑐 )
9 vh
10 vx 𝑥
11 6 cv 𝑏
12 vy 𝑦
13 vf 𝑓
14 13 cv 𝑓
15 10 cv 𝑥
16 9 cv
17 12 cv 𝑦
18 15 17 16 co ( 𝑥 𝑦 )
19 14 18 wcel 𝑓 ∈ ( 𝑥 𝑦 )
20 19 13 wmo ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 )
21 20 12 11 wral 𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 )
22 21 10 11 wral 𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 )
23 22 9 8 wsbc [ ( Hom ‘ 𝑐 ) / ]𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 )
24 23 6 5 wsbc [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ]𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 )
25 24 1 2 crab { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ]𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 ) }
26 0 25 wceq ThinCat = { 𝑐 ∈ Cat ∣ [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ]𝑥𝑏𝑦𝑏 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝑦 ) }