Metamath Proof Explorer


Definition df-thl

Description: Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Assertion df-thl toHL = ( ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cthl toHL
1 vh
2 cvv V
3 cipo toInc
4 ccss ClSubSp
5 1 cv
6 5 4 cfv ( ClSubSp ‘ )
7 6 3 cfv ( toInc ‘ ( ClSubSp ‘ ) )
8 csts sSet
9 coc oc
10 cnx ndx
11 10 9 cfv ( oc ‘ ndx )
12 cocv ocv
13 5 12 cfv ( ocv ‘ )
14 11 13 cop ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩
15 7 14 8 co ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ )
16 1 2 15 cmpt ( ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ ) )
17 0 16 wceq toHL = ( ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ) ) sSet ⟨ ( oc ‘ ndx ) , ( ocv ‘ ) ⟩ ) )