Step |
Hyp |
Ref |
Expression |
0 |
|
cthl |
⊢ toHL |
1 |
|
vh |
⊢ ℎ |
2 |
|
cvv |
⊢ V |
3 |
|
cipo |
⊢ toInc |
4 |
|
ccss |
⊢ ClSubSp |
5 |
1
|
cv |
⊢ ℎ |
6 |
5 4
|
cfv |
⊢ ( ClSubSp ‘ ℎ ) |
7 |
6 3
|
cfv |
⊢ ( toInc ‘ ( ClSubSp ‘ ℎ ) ) |
8 |
|
csts |
⊢ sSet |
9 |
|
coc |
⊢ oc |
10 |
|
cnx |
⊢ ndx |
11 |
10 9
|
cfv |
⊢ ( oc ‘ ndx ) |
12 |
|
cocv |
⊢ ocv |
13 |
5 12
|
cfv |
⊢ ( ocv ‘ ℎ ) |
14 |
11 13
|
cop |
⊢ 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 |
15 |
7 14 8
|
co |
⊢ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) |
16 |
1 2 15
|
cmpt |
⊢ ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |
17 |
0 16
|
wceq |
⊢ toHL = ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |