Metamath Proof Explorer


Definition df-tmd

Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Assertion df-tmd TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctmd TopMnd
1 vf 𝑓
2 cmnd Mnd
3 ctps TopSp
4 2 3 cin ( Mnd ∩ TopSp )
5 ctopn TopOpen
6 1 cv 𝑓
7 6 5 cfv ( TopOpen ‘ 𝑓 )
8 vj 𝑗
9 cplusf +𝑓
10 6 9 cfv ( +𝑓𝑓 )
11 8 cv 𝑗
12 ctx ×t
13 11 11 12 co ( 𝑗 ×t 𝑗 )
14 ccn Cn
15 13 11 14 co ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 )
16 10 15 wcel ( +𝑓𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 )
17 16 8 7 wsbc [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 )
18 17 1 4 crab { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) }
19 0 18 wceq TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) }