Metamath Proof Explorer


Definition df-tms

Description: Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion df-tms toMetSp = ( 𝑑 ran ∞Met ↦ ( { ⟨ ( Base ‘ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist ‘ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctms toMetSp
1 vd 𝑑
2 cxmet ∞Met
3 2 crn ran ∞Met
4 3 cuni ran ∞Met
5 cbs Base
6 cnx ndx
7 6 5 cfv ( Base ‘ ndx )
8 1 cv 𝑑
9 8 cdm dom 𝑑
10 9 cdm dom dom 𝑑
11 7 10 cop ⟨ ( Base ‘ ndx ) , dom dom 𝑑
12 cds dist
13 6 12 cfv ( dist ‘ ndx )
14 13 8 cop ⟨ ( dist ‘ ndx ) , 𝑑
15 11 14 cpr { ⟨ ( Base ‘ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist ‘ ndx ) , 𝑑 ⟩ }
16 csts sSet
17 cts TopSet
18 6 17 cfv ( TopSet ‘ ndx )
19 cmopn MetOpen
20 8 19 cfv ( MetOpen ‘ 𝑑 )
21 18 20 cop ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) ⟩
22 15 21 16 co ( { ⟨ ( Base ‘ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist ‘ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) ⟩ )
23 1 4 22 cmpt ( 𝑑 ran ∞Met ↦ ( { ⟨ ( Base ‘ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist ‘ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) ⟩ ) )
24 0 23 wceq toMetSp = ( 𝑑 ran ∞Met ↦ ( { ⟨ ( Base ‘ ndx ) , dom dom 𝑑 ⟩ , ⟨ ( dist ‘ ndx ) , 𝑑 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) ⟩ ) )