| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctng |
⊢ toNrmGrp |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
1
|
cv |
⊢ 𝑔 |
| 5 |
|
csts |
⊢ sSet |
| 6 |
|
cds |
⊢ dist |
| 7 |
|
cnx |
⊢ ndx |
| 8 |
7 6
|
cfv |
⊢ ( dist ‘ ndx ) |
| 9 |
3
|
cv |
⊢ 𝑓 |
| 10 |
|
csg |
⊢ -g |
| 11 |
4 10
|
cfv |
⊢ ( -g ‘ 𝑔 ) |
| 12 |
9 11
|
ccom |
⊢ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) |
| 13 |
8 12
|
cop |
⊢ 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 |
| 14 |
4 13 5
|
co |
⊢ ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) |
| 15 |
|
cts |
⊢ TopSet |
| 16 |
7 15
|
cfv |
⊢ ( TopSet ‘ ndx ) |
| 17 |
|
cmopn |
⊢ MetOpen |
| 18 |
12 17
|
cfv |
⊢ ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) |
| 19 |
16 18
|
cop |
⊢ 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 |
| 20 |
14 19 5
|
co |
⊢ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) |
| 21 |
1 3 2 2 20
|
cmpo |
⊢ ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) |
| 22 |
0 21
|
wceq |
⊢ toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) |