Metamath Proof Explorer


Definition df-tng

Description: Define a function that fills in the topology and metric components of a structure given a group and a norm on it. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion df-tng toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctng toNrmGrp
1 vg 𝑔
2 cvv V
3 vf 𝑓
4 1 cv 𝑔
5 csts sSet
6 cds dist
7 cnx ndx
8 7 6 cfv ( dist ‘ ndx )
9 3 cv 𝑓
10 csg -g
11 4 10 cfv ( -g𝑔 )
12 9 11 ccom ( 𝑓 ∘ ( -g𝑔 ) )
13 8 12 cop ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩
14 4 13 5 co ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ )
15 cts TopSet
16 7 15 cfv ( TopSet ‘ ndx )
17 cmopn MetOpen
18 12 17 cfv ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) )
19 16 18 cop ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩
20 14 19 5 co ( ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩ )
21 1 3 2 2 20 cmpo ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩ ) )
22 0 21 wceq toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g𝑔 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g𝑔 ) ) ) ⟩ ) )