Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
df-toply1
Metamath Proof Explorer
Description: Define a function which maps a coefficient function for a univariate
polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro , 12-Jun-2015)
Ref
Expression
Assertion
df-toply1
⊢ toPoly1 = ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctp1
⊢ toPoly1
1
vf
⊢ 𝑓
2
cvv
⊢ V
3
vn
⊢ 𝑛
4
cn0
⊢ ℕ0
5
cmap
⊢ ↑m
6
c1o
⊢ 1o
7
4 6 5
co
⊢ ( ℕ0 ↑m 1o )
8
1
cv
⊢ 𝑓
9
3
cv
⊢ 𝑛
10
c0
⊢ ∅
11
10 9
cfv
⊢ ( 𝑛 ‘ ∅ )
12
11 8
cfv
⊢ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) )
13
3 7 12
cmpt
⊢ ( 𝑛 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) )
14
1 2 13
cmpt
⊢ ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )
15
0 14
wceq
⊢ toPoly1 = ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0 ↑m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )