Metamath Proof Explorer


Definition df-toply1

Description: Define a function which maps a coefficient function for a univariate polynomial to the corresponding polynomial object. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion df-toply1 toPoly1 = ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctp1 toPoly1
1 vf 𝑓
2 cvv V
3 vn 𝑛
4 cn0 0
5 cmap m
6 c1o 1o
7 4 6 5 co ( ℕ0m 1o )
8 1 cv 𝑓
9 3 cv 𝑛
10 c0
11 10 9 cfv ( 𝑛 ‘ ∅ )
12 11 8 cfv ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) )
13 3 7 12 cmpt ( 𝑛 ∈ ( ℕ0m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) )
14 1 2 13 cmpt ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )
15 0 14 wceq toPoly1 = ( 𝑓 ∈ V ↦ ( 𝑛 ∈ ( ℕ0m 1o ) ↦ ( 𝑓 ‘ ( 𝑛 ‘ ∅ ) ) ) )