Metamath Proof Explorer
Description: Define the function that associates with a set the set of topologies on
it. (Contributed by Stefan O'Rear, 31-Jan-2015)
|
|
Ref |
Expression |
|
Assertion |
df-topon |
⊢ TopOn = ( 𝑏 ∈ V ↦ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
ctopon |
⊢ TopOn |
1 |
|
vb |
⊢ 𝑏 |
2 |
|
cvv |
⊢ V |
3 |
|
vj |
⊢ 𝑗 |
4 |
|
ctop |
⊢ Top |
5 |
1
|
cv |
⊢ 𝑏 |
6 |
3
|
cv |
⊢ 𝑗 |
7 |
6
|
cuni |
⊢ ∪ 𝑗 |
8 |
5 7
|
wceq |
⊢ 𝑏 = ∪ 𝑗 |
9 |
8 3 4
|
crab |
⊢ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } |
10 |
1 2 9
|
cmpt |
⊢ ( 𝑏 ∈ V ↦ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ) |
11 |
0 10
|
wceq |
⊢ TopOn = ( 𝑏 ∈ V ↦ { 𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗 } ) |