Description: Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-topsp | ⊢ TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctps | ⊢ TopSp | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | ctopn | ⊢ TopOpen | |
| 3 | 1 | cv | ⊢ 𝑓 |
| 4 | 3 2 | cfv | ⊢ ( TopOpen ‘ 𝑓 ) |
| 5 | ctopon | ⊢ TopOn | |
| 6 | cbs | ⊢ Base | |
| 7 | 3 6 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 8 | 7 5 | cfv | ⊢ ( TopOn ‘ ( Base ‘ 𝑓 ) ) |
| 9 | 4 8 | wcel | ⊢ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) |
| 10 | 9 1 | cab | ⊢ { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |
| 11 | 0 10 | wceq | ⊢ TopSp = { 𝑓 ∣ ( TopOpen ‘ 𝑓 ) ∈ ( TopOn ‘ ( Base ‘ 𝑓 ) ) } |