Metamath Proof Explorer


Definition df-totbnd

Description: Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-totbnd TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctotbnd TotBnd
1 vx 𝑥
2 cvv V
3 vm 𝑚
4 cmet Met
5 1 cv 𝑥
6 5 4 cfv ( Met ‘ 𝑥 )
7 vd 𝑑
8 crp +
9 vv 𝑣
10 cfn Fin
11 9 cv 𝑣
12 11 cuni 𝑣
13 12 5 wceq 𝑣 = 𝑥
14 vb 𝑏
15 vy 𝑦
16 14 cv 𝑏
17 15 cv 𝑦
18 cbl ball
19 3 cv 𝑚
20 19 18 cfv ( ball ‘ 𝑚 )
21 7 cv 𝑑
22 17 21 20 co ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 )
23 16 22 wceq 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 )
24 23 15 5 wrex 𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 )
25 24 14 11 wral 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 )
26 13 25 wa ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) )
27 26 9 10 wrex 𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) )
28 27 7 8 wral 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) )
29 28 3 6 crab { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) }
30 1 2 29 cmpt ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } )
31 0 30 wceq TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀ 𝑏𝑣𝑦𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } )