Step |
Hyp |
Ref |
Expression |
0 |
|
ctotbnd |
⊢ TotBnd |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vm |
⊢ 𝑚 |
4 |
|
cmet |
⊢ Met |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
5 4
|
cfv |
⊢ ( Met ‘ 𝑥 ) |
7 |
|
vd |
⊢ 𝑑 |
8 |
|
crp |
⊢ ℝ+ |
9 |
|
vv |
⊢ 𝑣 |
10 |
|
cfn |
⊢ Fin |
11 |
9
|
cv |
⊢ 𝑣 |
12 |
11
|
cuni |
⊢ ∪ 𝑣 |
13 |
12 5
|
wceq |
⊢ ∪ 𝑣 = 𝑥 |
14 |
|
vb |
⊢ 𝑏 |
15 |
|
vy |
⊢ 𝑦 |
16 |
14
|
cv |
⊢ 𝑏 |
17 |
15
|
cv |
⊢ 𝑦 |
18 |
|
cbl |
⊢ ball |
19 |
3
|
cv |
⊢ 𝑚 |
20 |
19 18
|
cfv |
⊢ ( ball ‘ 𝑚 ) |
21 |
7
|
cv |
⊢ 𝑑 |
22 |
17 21 20
|
co |
⊢ ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
23 |
16 22
|
wceq |
⊢ 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
24 |
23 15 5
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
25 |
24 14 11
|
wral |
⊢ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) |
26 |
13 25
|
wa |
⊢ ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
27 |
26 9 10
|
wrex |
⊢ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
28 |
27 7 8
|
wral |
⊢ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) |
29 |
28 3 6
|
crab |
⊢ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } |
30 |
1 2 29
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
31 |
0 30
|
wceq |
⊢ TotBnd = ( 𝑥 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑥 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑥 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑦 ∈ 𝑥 𝑏 = ( 𝑦 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |