Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Function transposition
df-tpos
Metamath Proof Explorer
Description: Define the transposition of a function, which is a function
G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro , 10-Sep-2015)
Ref
Expression
Assertion
df-tpos
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
⊢ 𝐹
1
0
ctpos
⊢ tpos 𝐹
2
vx
⊢ 𝑥
3
0
cdm
⊢ dom 𝐹
4
3
ccnv
⊢ ◡ dom 𝐹
5
c0
⊢ ∅
6
5
csn
⊢ { ∅ }
7
4 6
cun
⊢ ( ◡ dom 𝐹 ∪ { ∅ } )
8
2
cv
⊢ 𝑥
9
8
csn
⊢ { 𝑥 }
10
9
ccnv
⊢ ◡ { 𝑥 }
11
10
cuni
⊢ ∪ ◡ { 𝑥 }
12
2 7 11
cmpt
⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } )
13
0 12
ccom
⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) )
14
1 13
wceq
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) )