Metamath Proof Explorer


Definition df-tpos

Description: Define the transposition of a function, which is a function G = tpos F satisfying G ( x , y ) = F ( y , x ) . (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 ctpos tpos 𝐹
2 vx 𝑥
3 0 cdm dom 𝐹
4 3 ccnv dom 𝐹
5 c0
6 5 csn { ∅ }
7 4 6 cun ( dom 𝐹 ∪ { ∅ } )
8 2 cv 𝑥
9 8 csn { 𝑥 }
10 9 ccnv { 𝑥 }
11 10 cuni { 𝑥 }
12 2 7 11 cmpt ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } )
13 0 12 ccom ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
14 1 13 wceq tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )