Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkgb |
⊢ TarskiGB |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cbs |
⊢ Base |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
citv |
⊢ Itv |
7 |
3 6
|
cfv |
⊢ ( Itv ‘ 𝑓 ) |
8 |
|
vi |
⊢ 𝑖 |
9 |
|
vx |
⊢ 𝑥 |
10 |
5
|
cv |
⊢ 𝑝 |
11 |
|
vy |
⊢ 𝑦 |
12 |
11
|
cv |
⊢ 𝑦 |
13 |
9
|
cv |
⊢ 𝑥 |
14 |
8
|
cv |
⊢ 𝑖 |
15 |
13 13 14
|
co |
⊢ ( 𝑥 𝑖 𝑥 ) |
16 |
12 15
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) |
17 |
13 12
|
wceq |
⊢ 𝑥 = 𝑦 |
18 |
16 17
|
wi |
⊢ ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) |
19 |
18 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) |
20 |
19 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) |
21 |
|
vz |
⊢ 𝑧 |
22 |
|
vu |
⊢ 𝑢 |
23 |
|
vv |
⊢ 𝑣 |
24 |
22
|
cv |
⊢ 𝑢 |
25 |
21
|
cv |
⊢ 𝑧 |
26 |
13 25 14
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
27 |
24 26
|
wcel |
⊢ 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) |
28 |
23
|
cv |
⊢ 𝑣 |
29 |
12 25 14
|
co |
⊢ ( 𝑦 𝑖 𝑧 ) |
30 |
28 29
|
wcel |
⊢ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) |
31 |
27 30
|
wa |
⊢ ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) |
32 |
|
va |
⊢ 𝑎 |
33 |
32
|
cv |
⊢ 𝑎 |
34 |
24 12 14
|
co |
⊢ ( 𝑢 𝑖 𝑦 ) |
35 |
33 34
|
wcel |
⊢ 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) |
36 |
28 13 14
|
co |
⊢ ( 𝑣 𝑖 𝑥 ) |
37 |
33 36
|
wcel |
⊢ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) |
38 |
35 37
|
wa |
⊢ ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) |
39 |
38 32 10
|
wrex |
⊢ ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) |
40 |
31 39
|
wi |
⊢ ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
41 |
40 23 10
|
wral |
⊢ ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
42 |
41 22 10
|
wral |
⊢ ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
43 |
42 21 10
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
44 |
43 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
45 |
44 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) |
46 |
|
vs |
⊢ 𝑠 |
47 |
10
|
cpw |
⊢ 𝒫 𝑝 |
48 |
|
vt |
⊢ 𝑡 |
49 |
46
|
cv |
⊢ 𝑠 |
50 |
48
|
cv |
⊢ 𝑡 |
51 |
33 12 14
|
co |
⊢ ( 𝑎 𝑖 𝑦 ) |
52 |
13 51
|
wcel |
⊢ 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) |
53 |
52 11 50
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) |
54 |
53 9 49
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) |
55 |
54 32 10
|
wrex |
⊢ ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) |
56 |
|
vb |
⊢ 𝑏 |
57 |
56
|
cv |
⊢ 𝑏 |
58 |
13 12 14
|
co |
⊢ ( 𝑥 𝑖 𝑦 ) |
59 |
57 58
|
wcel |
⊢ 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) |
60 |
59 11 50
|
wral |
⊢ ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) |
61 |
60 9 49
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) |
62 |
61 56 10
|
wrex |
⊢ ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) |
63 |
55 62
|
wi |
⊢ ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) |
64 |
63 48 47
|
wral |
⊢ ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) |
65 |
64 46 47
|
wral |
⊢ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) |
66 |
20 45 65
|
w3a |
⊢ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
67 |
66 8 7
|
wsbc |
⊢ [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
68 |
67 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) |
69 |
68 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) } |
70 |
0 69
|
wceq |
⊢ TarskiGB = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑣 ∈ ( 𝑦 𝑖 𝑧 ) ) → ∃ 𝑎 ∈ 𝑝 ( 𝑎 ∈ ( 𝑢 𝑖 𝑦 ) ∧ 𝑎 ∈ ( 𝑣 𝑖 𝑥 ) ) ) ∧ ∀ 𝑠 ∈ 𝒫 𝑝 ∀ 𝑡 ∈ 𝒫 𝑝 ( ∃ 𝑎 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑥 ∈ ( 𝑎 𝑖 𝑦 ) → ∃ 𝑏 ∈ 𝑝 ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑡 𝑏 ∈ ( 𝑥 𝑖 𝑦 ) ) ) } |