Metamath Proof Explorer


Definition df-trkgc

Description: Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of Schwabhauser p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr , so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Assertion df-trkgc TarskiGC = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkgc TarskiGC
1 vf 𝑓
2 cbs Base
3 1 cv 𝑓
4 3 2 cfv ( Base ‘ 𝑓 )
5 vp 𝑝
6 cds dist
7 3 6 cfv ( dist ‘ 𝑓 )
8 vd 𝑑
9 vx 𝑥
10 5 cv 𝑝
11 vy 𝑦
12 9 cv 𝑥
13 8 cv 𝑑
14 11 cv 𝑦
15 12 14 13 co ( 𝑥 𝑑 𝑦 )
16 14 12 13 co ( 𝑦 𝑑 𝑥 )
17 15 16 wceq ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 )
18 17 11 10 wral 𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 )
19 18 9 10 wral 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 )
20 vz 𝑧
21 20 cv 𝑧
22 21 21 13 co ( 𝑧 𝑑 𝑧 )
23 15 22 wceq ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 )
24 12 14 wceq 𝑥 = 𝑦
25 23 24 wi ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 )
26 25 20 10 wral 𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 )
27 26 11 10 wral 𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 )
28 27 9 10 wral 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 )
29 19 28 wa ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) )
30 29 8 7 wsbc [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) )
31 30 5 4 wsbc [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) )
32 31 1 cab { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) }
33 0 32 wceq TarskiGC = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥𝑝𝑦𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) }