Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkgc |
⊢ TarskiGC |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cbs |
⊢ Base |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
cds |
⊢ dist |
7 |
3 6
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
8 |
|
vd |
⊢ 𝑑 |
9 |
|
vx |
⊢ 𝑥 |
10 |
5
|
cv |
⊢ 𝑝 |
11 |
|
vy |
⊢ 𝑦 |
12 |
9
|
cv |
⊢ 𝑥 |
13 |
8
|
cv |
⊢ 𝑑 |
14 |
11
|
cv |
⊢ 𝑦 |
15 |
12 14 13
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
16 |
14 12 13
|
co |
⊢ ( 𝑦 𝑑 𝑥 ) |
17 |
15 16
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
18 |
17 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
19 |
18 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) |
20 |
|
vz |
⊢ 𝑧 |
21 |
20
|
cv |
⊢ 𝑧 |
22 |
21 21 13
|
co |
⊢ ( 𝑧 𝑑 𝑧 ) |
23 |
15 22
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) |
24 |
12 14
|
wceq |
⊢ 𝑥 = 𝑦 |
25 |
23 24
|
wi |
⊢ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
26 |
25 20 10
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
27 |
26 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
28 |
27 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) |
29 |
19 28
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
30 |
29 8 7
|
wsbc |
⊢ [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
31 |
30 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) |
32 |
31 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |
33 |
0 32
|
wceq |
⊢ TarskiGC = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ( 𝑥 𝑑 𝑦 ) = ( 𝑦 𝑑 𝑥 ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ( ( 𝑥 𝑑 𝑦 ) = ( 𝑧 𝑑 𝑧 ) → 𝑥 = 𝑦 ) ) } |