Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkgcb |
⊢ TarskiGCB |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cbs |
⊢ Base |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
cds |
⊢ dist |
7 |
3 6
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
8 |
|
vd |
⊢ 𝑑 |
9 |
|
citv |
⊢ Itv |
10 |
3 9
|
cfv |
⊢ ( Itv ‘ 𝑓 ) |
11 |
|
vi |
⊢ 𝑖 |
12 |
|
vx |
⊢ 𝑥 |
13 |
5
|
cv |
⊢ 𝑝 |
14 |
|
vy |
⊢ 𝑦 |
15 |
|
vz |
⊢ 𝑧 |
16 |
|
vu |
⊢ 𝑢 |
17 |
|
va |
⊢ 𝑎 |
18 |
|
vb |
⊢ 𝑏 |
19 |
|
vc |
⊢ 𝑐 |
20 |
|
vv |
⊢ 𝑣 |
21 |
12
|
cv |
⊢ 𝑥 |
22 |
14
|
cv |
⊢ 𝑦 |
23 |
21 22
|
wne |
⊢ 𝑥 ≠ 𝑦 |
24 |
11
|
cv |
⊢ 𝑖 |
25 |
15
|
cv |
⊢ 𝑧 |
26 |
21 25 24
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
27 |
22 26
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) |
28 |
18
|
cv |
⊢ 𝑏 |
29 |
17
|
cv |
⊢ 𝑎 |
30 |
19
|
cv |
⊢ 𝑐 |
31 |
29 30 24
|
co |
⊢ ( 𝑎 𝑖 𝑐 ) |
32 |
28 31
|
wcel |
⊢ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) |
33 |
23 27 32
|
w3a |
⊢ ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) |
34 |
8
|
cv |
⊢ 𝑑 |
35 |
21 22 34
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
36 |
29 28 34
|
co |
⊢ ( 𝑎 𝑑 𝑏 ) |
37 |
35 36
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) |
38 |
22 25 34
|
co |
⊢ ( 𝑦 𝑑 𝑧 ) |
39 |
28 30 34
|
co |
⊢ ( 𝑏 𝑑 𝑐 ) |
40 |
38 39
|
wceq |
⊢ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) |
41 |
37 40
|
wa |
⊢ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) |
42 |
16
|
cv |
⊢ 𝑢 |
43 |
21 42 34
|
co |
⊢ ( 𝑥 𝑑 𝑢 ) |
44 |
20
|
cv |
⊢ 𝑣 |
45 |
29 44 34
|
co |
⊢ ( 𝑎 𝑑 𝑣 ) |
46 |
43 45
|
wceq |
⊢ ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) |
47 |
22 42 34
|
co |
⊢ ( 𝑦 𝑑 𝑢 ) |
48 |
28 44 34
|
co |
⊢ ( 𝑏 𝑑 𝑣 ) |
49 |
47 48
|
wceq |
⊢ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) |
50 |
46 49
|
wa |
⊢ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) |
51 |
41 50
|
wa |
⊢ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) |
52 |
33 51
|
wa |
⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) |
53 |
25 42 34
|
co |
⊢ ( 𝑧 𝑑 𝑢 ) |
54 |
30 44 34
|
co |
⊢ ( 𝑐 𝑑 𝑣 ) |
55 |
53 54
|
wceq |
⊢ ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) |
56 |
52 55
|
wi |
⊢ ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
57 |
56 20 13
|
wral |
⊢ ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
58 |
57 19 13
|
wral |
⊢ ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
59 |
58 18 13
|
wral |
⊢ ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
60 |
59 17 13
|
wral |
⊢ ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
61 |
60 16 13
|
wral |
⊢ ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
62 |
61 15 13
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
63 |
62 14 13
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
64 |
63 12 13
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
65 |
38 36
|
wceq |
⊢ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) |
66 |
27 65
|
wa |
⊢ ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
67 |
66 15 13
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
68 |
67 18 13
|
wral |
⊢ ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
69 |
68 17 13
|
wral |
⊢ ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
70 |
69 14 13
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
71 |
70 12 13
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
72 |
64 71
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
73 |
72 11 10
|
wsbc |
⊢ [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
74 |
73 8 7
|
wsbc |
⊢ [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
75 |
74 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
76 |
75 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) } |
77 |
0 76
|
wceq |
⊢ TarskiGCB = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) } |