Metamath Proof Explorer


Definition df-trkgcb

Description: Define the class of geometries fulfilling the five segment axiom, Axiom A5 of Schwabhauser p. 11, and segment construction axiom, Axiom A4 of Schwabhauser p. 11. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Assertion df-trkgcb TarskiGCB = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkgcb TarskiGCB
1 vf 𝑓
2 cbs Base
3 1 cv 𝑓
4 3 2 cfv ( Base ‘ 𝑓 )
5 vp 𝑝
6 cds dist
7 3 6 cfv ( dist ‘ 𝑓 )
8 vd 𝑑
9 citv Itv
10 3 9 cfv ( Itv ‘ 𝑓 )
11 vi 𝑖
12 vx 𝑥
13 5 cv 𝑝
14 vy 𝑦
15 vz 𝑧
16 vu 𝑢
17 va 𝑎
18 vb 𝑏
19 vc 𝑐
20 vv 𝑣
21 12 cv 𝑥
22 14 cv 𝑦
23 21 22 wne 𝑥𝑦
24 11 cv 𝑖
25 15 cv 𝑧
26 21 25 24 co ( 𝑥 𝑖 𝑧 )
27 22 26 wcel 𝑦 ∈ ( 𝑥 𝑖 𝑧 )
28 18 cv 𝑏
29 17 cv 𝑎
30 19 cv 𝑐
31 29 30 24 co ( 𝑎 𝑖 𝑐 )
32 28 31 wcel 𝑏 ∈ ( 𝑎 𝑖 𝑐 )
33 23 27 32 w3a ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) )
34 8 cv 𝑑
35 21 22 34 co ( 𝑥 𝑑 𝑦 )
36 29 28 34 co ( 𝑎 𝑑 𝑏 )
37 35 36 wceq ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 )
38 22 25 34 co ( 𝑦 𝑑 𝑧 )
39 28 30 34 co ( 𝑏 𝑑 𝑐 )
40 38 39 wceq ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 )
41 37 40 wa ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) )
42 16 cv 𝑢
43 21 42 34 co ( 𝑥 𝑑 𝑢 )
44 20 cv 𝑣
45 29 44 34 co ( 𝑎 𝑑 𝑣 )
46 43 45 wceq ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 )
47 22 42 34 co ( 𝑦 𝑑 𝑢 )
48 28 44 34 co ( 𝑏 𝑑 𝑣 )
49 47 48 wceq ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 )
50 46 49 wa ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) )
51 41 50 wa ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) )
52 33 51 wa ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) )
53 25 42 34 co ( 𝑧 𝑑 𝑢 )
54 30 44 34 co ( 𝑐 𝑑 𝑣 )
55 53 54 wceq ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 )
56 52 55 wi ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
57 56 20 13 wral 𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
58 57 19 13 wral 𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
59 58 18 13 wral 𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
60 59 17 13 wral 𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
61 60 16 13 wral 𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
62 61 15 13 wral 𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
63 62 14 13 wral 𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
64 63 12 13 wral 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) )
65 38 36 wceq ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 )
66 27 65 wa ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
67 66 15 13 wrex 𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
68 67 18 13 wral 𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
69 68 17 13 wral 𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
70 69 14 13 wral 𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
71 70 12 13 wral 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) )
72 64 71 wa ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) )
73 72 11 10 wsbc [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) )
74 73 8 7 wsbc [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) )
75 74 5 4 wsbc [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) )
76 75 1 cab { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) }
77 0 76 wceq TarskiGCB = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 ( ( ( 𝑥𝑦𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) }