Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkge |
⊢ TarskiGE |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cbs |
⊢ Base |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
citv |
⊢ Itv |
7 |
3 6
|
cfv |
⊢ ( Itv ‘ 𝑓 ) |
8 |
|
vi |
⊢ 𝑖 |
9 |
|
vx |
⊢ 𝑥 |
10 |
5
|
cv |
⊢ 𝑝 |
11 |
|
vy |
⊢ 𝑦 |
12 |
|
vz |
⊢ 𝑧 |
13 |
|
vu |
⊢ 𝑢 |
14 |
|
vv |
⊢ 𝑣 |
15 |
13
|
cv |
⊢ 𝑢 |
16 |
9
|
cv |
⊢ 𝑥 |
17 |
8
|
cv |
⊢ 𝑖 |
18 |
14
|
cv |
⊢ 𝑣 |
19 |
16 18 17
|
co |
⊢ ( 𝑥 𝑖 𝑣 ) |
20 |
15 19
|
wcel |
⊢ 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) |
21 |
11
|
cv |
⊢ 𝑦 |
22 |
12
|
cv |
⊢ 𝑧 |
23 |
21 22 17
|
co |
⊢ ( 𝑦 𝑖 𝑧 ) |
24 |
15 23
|
wcel |
⊢ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) |
25 |
16 15
|
wne |
⊢ 𝑥 ≠ 𝑢 |
26 |
20 24 25
|
w3a |
⊢ ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) |
27 |
|
va |
⊢ 𝑎 |
28 |
|
vb |
⊢ 𝑏 |
29 |
27
|
cv |
⊢ 𝑎 |
30 |
16 29 17
|
co |
⊢ ( 𝑥 𝑖 𝑎 ) |
31 |
21 30
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) |
32 |
28
|
cv |
⊢ 𝑏 |
33 |
16 32 17
|
co |
⊢ ( 𝑥 𝑖 𝑏 ) |
34 |
22 33
|
wcel |
⊢ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) |
35 |
29 32 17
|
co |
⊢ ( 𝑎 𝑖 𝑏 ) |
36 |
18 35
|
wcel |
⊢ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) |
37 |
31 34 36
|
w3a |
⊢ ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) |
38 |
37 28 10
|
wrex |
⊢ ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) |
39 |
38 27 10
|
wrex |
⊢ ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) |
40 |
26 39
|
wi |
⊢ ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
41 |
40 14 10
|
wral |
⊢ ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
42 |
41 13 10
|
wral |
⊢ ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
43 |
42 12 10
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
44 |
43 11 10
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
45 |
44 9 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
46 |
45 8 7
|
wsbc |
⊢ [ ( Itv ‘ 𝑓 ) / 𝑖 ] ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
47 |
46 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) |
48 |
47 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) } |
49 |
0 48
|
wceq |
⊢ TarskiGE = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( 𝑢 ∈ ( 𝑥 𝑖 𝑣 ) ∧ 𝑢 ∈ ( 𝑦 𝑖 𝑧 ) ∧ 𝑥 ≠ 𝑢 ) → ∃ 𝑎 ∈ 𝑝 ∃ 𝑏 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑎 ) ∧ 𝑧 ∈ ( 𝑥 𝑖 𝑏 ) ∧ 𝑣 ∈ ( 𝑎 𝑖 𝑏 ) ) ) } |