Metamath Proof Explorer


Definition df-tsr

Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009)

Ref Expression
Assertion df-tsr TosetRel = { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 𝑟 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctsr TosetRel
1 vr 𝑟
2 cps PosetRel
3 1 cv 𝑟
4 3 cdm dom 𝑟
5 4 4 cxp ( dom 𝑟 × dom 𝑟 )
6 3 ccnv 𝑟
7 3 6 cun ( 𝑟 𝑟 )
8 5 7 wss ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 𝑟 )
9 8 1 2 crab { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 𝑟 ) }
10 0 9 wceq TosetRel = { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 𝑟 ) }