Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-tsr | ⊢ TosetRel = { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctsr | ⊢ TosetRel | |
1 | vr | ⊢ 𝑟 | |
2 | cps | ⊢ PosetRel | |
3 | 1 | cv | ⊢ 𝑟 |
4 | 3 | cdm | ⊢ dom 𝑟 |
5 | 4 4 | cxp | ⊢ ( dom 𝑟 × dom 𝑟 ) |
6 | 3 | ccnv | ⊢ ◡ 𝑟 |
7 | 3 6 | cun | ⊢ ( 𝑟 ∪ ◡ 𝑟 ) |
8 | 5 7 | wss | ⊢ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) |
9 | 8 1 2 | crab | ⊢ { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) } |
10 | 0 9 | wceq | ⊢ TosetRel = { 𝑟 ∈ PosetRel ∣ ( dom 𝑟 × dom 𝑟 ) ⊆ ( 𝑟 ∪ ◡ 𝑟 ) } |