| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cttg | 
							⊢ toTG  | 
						
						
							| 1 | 
							
								
							 | 
							vw | 
							⊢ 𝑤  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 4 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							⊢ 𝑤  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑤 )  | 
						
						
							| 7 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 8 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 9 | 
							
								
							 | 
							vk | 
							⊢ 𝑘  | 
						
						
							| 10 | 
							
								
							 | 
							cc0 | 
							⊢ 0  | 
						
						
							| 11 | 
							
								
							 | 
							cicc | 
							⊢ [,]  | 
						
						
							| 12 | 
							
								
							 | 
							c1 | 
							⊢ 1  | 
						
						
							| 13 | 
							
								10 12 11
							 | 
							co | 
							⊢ ( 0 [,] 1 )  | 
						
						
							| 14 | 
							
								8
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 15 | 
							
								
							 | 
							csg | 
							⊢ -g  | 
						
						
							| 16 | 
							
								5 15
							 | 
							cfv | 
							⊢ ( -g ‘ 𝑤 )  | 
						
						
							| 17 | 
							
								3
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 18 | 
							
								14 17 16
							 | 
							co | 
							⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  | 
						
						
							| 19 | 
							
								9
							 | 
							cv | 
							⊢ 𝑘  | 
						
						
							| 20 | 
							
								
							 | 
							cvsca | 
							⊢  ·𝑠   | 
						
						
							| 21 | 
							
								5 20
							 | 
							cfv | 
							⊢ (  ·𝑠  ‘ 𝑤 )  | 
						
						
							| 22 | 
							
								7
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 23 | 
							
								22 17 16
							 | 
							co | 
							⊢ ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 )  | 
						
						
							| 24 | 
							
								19 23 21
							 | 
							co | 
							⊢ ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  | 
						
						
							| 25 | 
							
								18 24
							 | 
							wceq | 
							⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  | 
						
						
							| 26 | 
							
								25 9 13
							 | 
							wrex | 
							⊢ ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  | 
						
						
							| 27 | 
							
								26 8 6
							 | 
							crab | 
							⊢ { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) }  | 
						
						
							| 28 | 
							
								3 7 6 6 27
							 | 
							cmpo | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  | 
						
						
							| 29 | 
							
								
							 | 
							vi | 
							⊢ 𝑖  | 
						
						
							| 30 | 
							
								
							 | 
							csts | 
							⊢  sSet   | 
						
						
							| 31 | 
							
								
							 | 
							citv | 
							⊢ Itv  | 
						
						
							| 32 | 
							
								
							 | 
							cnx | 
							⊢ ndx  | 
						
						
							| 33 | 
							
								32 31
							 | 
							cfv | 
							⊢ ( Itv ‘ ndx )  | 
						
						
							| 34 | 
							
								29
							 | 
							cv | 
							⊢ 𝑖  | 
						
						
							| 35 | 
							
								33 34
							 | 
							cop | 
							⊢ 〈 ( Itv ‘ ndx ) ,  𝑖 〉  | 
						
						
							| 36 | 
							
								5 35 30
							 | 
							co | 
							⊢ ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  | 
						
						
							| 37 | 
							
								
							 | 
							clng | 
							⊢ LineG  | 
						
						
							| 38 | 
							
								32 37
							 | 
							cfv | 
							⊢ ( LineG ‘ ndx )  | 
						
						
							| 39 | 
							
								17 22 34
							 | 
							co | 
							⊢ ( 𝑥 𝑖 𝑦 )  | 
						
						
							| 40 | 
							
								14 39
							 | 
							wcel | 
							⊢ 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  | 
						
						
							| 41 | 
							
								14 22 34
							 | 
							co | 
							⊢ ( 𝑧 𝑖 𝑦 )  | 
						
						
							| 42 | 
							
								17 41
							 | 
							wcel | 
							⊢ 𝑥  ∈  ( 𝑧 𝑖 𝑦 )  | 
						
						
							| 43 | 
							
								17 14 34
							 | 
							co | 
							⊢ ( 𝑥 𝑖 𝑧 )  | 
						
						
							| 44 | 
							
								22 43
							 | 
							wcel | 
							⊢ 𝑦  ∈  ( 𝑥 𝑖 𝑧 )  | 
						
						
							| 45 | 
							
								40 42 44
							 | 
							w3o | 
							⊢ ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) )  | 
						
						
							| 46 | 
							
								45 8 6
							 | 
							crab | 
							⊢ { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  | 
						
						
							| 47 | 
							
								3 7 6 6 46
							 | 
							cmpo | 
							⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  | 
						
						
							| 48 | 
							
								38 47
							 | 
							cop | 
							⊢ 〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  | 
						
						
							| 49 | 
							
								36 48 30
							 | 
							co | 
							⊢ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  | 
						
						
							| 50 | 
							
								29 28 49
							 | 
							csb | 
							⊢ ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  | 
						
						
							| 51 | 
							
								1 2 50
							 | 
							cmpt | 
							⊢ ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 52 | 
							
								0 51
							 | 
							wceq | 
							⊢ toTG  =  ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  |