| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cttg |
⊢ toTG |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 7 |
|
vy |
⊢ 𝑦 |
| 8 |
|
vz |
⊢ 𝑧 |
| 9 |
|
vk |
⊢ 𝑘 |
| 10 |
|
cc0 |
⊢ 0 |
| 11 |
|
cicc |
⊢ [,] |
| 12 |
|
c1 |
⊢ 1 |
| 13 |
10 12 11
|
co |
⊢ ( 0 [,] 1 ) |
| 14 |
8
|
cv |
⊢ 𝑧 |
| 15 |
|
csg |
⊢ -g |
| 16 |
5 15
|
cfv |
⊢ ( -g ‘ 𝑤 ) |
| 17 |
3
|
cv |
⊢ 𝑥 |
| 18 |
14 17 16
|
co |
⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) |
| 19 |
9
|
cv |
⊢ 𝑘 |
| 20 |
|
cvsca |
⊢ ·𝑠 |
| 21 |
5 20
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
| 22 |
7
|
cv |
⊢ 𝑦 |
| 23 |
22 17 16
|
co |
⊢ ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) |
| 24 |
19 23 21
|
co |
⊢ ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) |
| 25 |
18 24
|
wceq |
⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) |
| 26 |
25 9 13
|
wrex |
⊢ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) |
| 27 |
26 8 6
|
crab |
⊢ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } |
| 28 |
3 7 6 6 27
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) |
| 29 |
|
vi |
⊢ 𝑖 |
| 30 |
|
csts |
⊢ sSet |
| 31 |
|
citv |
⊢ Itv |
| 32 |
|
cnx |
⊢ ndx |
| 33 |
32 31
|
cfv |
⊢ ( Itv ‘ ndx ) |
| 34 |
29
|
cv |
⊢ 𝑖 |
| 35 |
33 34
|
cop |
⊢ 〈 ( Itv ‘ ndx ) , 𝑖 〉 |
| 36 |
5 35 30
|
co |
⊢ ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) |
| 37 |
|
clng |
⊢ LineG |
| 38 |
32 37
|
cfv |
⊢ ( LineG ‘ ndx ) |
| 39 |
17 22 34
|
co |
⊢ ( 𝑥 𝑖 𝑦 ) |
| 40 |
14 39
|
wcel |
⊢ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) |
| 41 |
14 22 34
|
co |
⊢ ( 𝑧 𝑖 𝑦 ) |
| 42 |
17 41
|
wcel |
⊢ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) |
| 43 |
17 14 34
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
| 44 |
22 43
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) |
| 45 |
40 42 44
|
w3o |
⊢ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
| 46 |
45 8 6
|
crab |
⊢ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } |
| 47 |
3 7 6 6 46
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) |
| 48 |
38 47
|
cop |
⊢ 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 |
| 49 |
36 48 30
|
co |
⊢ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) |
| 50 |
29 28 49
|
csb |
⊢ ⦋ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) |
| 51 |
1 2 50
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ ⦋ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
| 52 |
0 51
|
wceq |
⊢ toTG = ( 𝑤 ∈ V ↦ ⦋ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |