| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR | ⊢ 𝑅 | 
						
							| 1 | 0 | cttrcl | ⊢ t++ 𝑅 | 
						
							| 2 |  | vx | ⊢ 𝑥 | 
						
							| 3 |  | vy | ⊢ 𝑦 | 
						
							| 4 |  | vn | ⊢ 𝑛 | 
						
							| 5 |  | com | ⊢ ω | 
						
							| 6 |  | c1o | ⊢ 1o | 
						
							| 7 | 5 6 | cdif | ⊢ ( ω  ∖  1o ) | 
						
							| 8 |  | vf | ⊢ 𝑓 | 
						
							| 9 | 8 | cv | ⊢ 𝑓 | 
						
							| 10 | 4 | cv | ⊢ 𝑛 | 
						
							| 11 | 10 | csuc | ⊢ suc  𝑛 | 
						
							| 12 | 9 11 | wfn | ⊢ 𝑓  Fn  suc  𝑛 | 
						
							| 13 |  | c0 | ⊢ ∅ | 
						
							| 14 | 13 9 | cfv | ⊢ ( 𝑓 ‘ ∅ ) | 
						
							| 15 | 2 | cv | ⊢ 𝑥 | 
						
							| 16 | 14 15 | wceq | ⊢ ( 𝑓 ‘ ∅ )  =  𝑥 | 
						
							| 17 | 10 9 | cfv | ⊢ ( 𝑓 ‘ 𝑛 ) | 
						
							| 18 | 3 | cv | ⊢ 𝑦 | 
						
							| 19 | 17 18 | wceq | ⊢ ( 𝑓 ‘ 𝑛 )  =  𝑦 | 
						
							| 20 | 16 19 | wa | ⊢ ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 ) | 
						
							| 21 |  | vm | ⊢ 𝑚 | 
						
							| 22 | 21 | cv | ⊢ 𝑚 | 
						
							| 23 | 22 9 | cfv | ⊢ ( 𝑓 ‘ 𝑚 ) | 
						
							| 24 | 22 | csuc | ⊢ suc  𝑚 | 
						
							| 25 | 24 9 | cfv | ⊢ ( 𝑓 ‘ suc  𝑚 ) | 
						
							| 26 | 23 25 0 | wbr | ⊢ ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) | 
						
							| 27 | 26 21 10 | wral | ⊢ ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) | 
						
							| 28 | 12 20 27 | w3a | ⊢ ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) | 
						
							| 29 | 28 8 | wex | ⊢ ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) | 
						
							| 30 | 29 4 7 | wrex | ⊢ ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) | 
						
							| 31 | 30 2 3 | copab | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) } | 
						
							| 32 | 1 31 | wceq | ⊢ t++ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) } |