Metamath Proof Explorer


Definition df-tus

Description: Define the function mapping a uniform structure to a uniform space. (Contributed by Thierry Arnoux, 17-Nov-2017)

Ref Expression
Assertion df-tus toUnifSp = ( 𝑢 ran UnifOn ↦ ( { ⟨ ( Base ‘ ndx ) , dom 𝑢 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑢 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctus toUnifSp
1 vu 𝑢
2 cust UnifOn
3 2 crn ran UnifOn
4 3 cuni ran UnifOn
5 cbs Base
6 cnx ndx
7 6 5 cfv ( Base ‘ ndx )
8 1 cv 𝑢
9 8 cuni 𝑢
10 9 cdm dom 𝑢
11 7 10 cop ⟨ ( Base ‘ ndx ) , dom 𝑢
12 cunif UnifSet
13 6 12 cfv ( UnifSet ‘ ndx )
14 13 8 cop ⟨ ( UnifSet ‘ ndx ) , 𝑢
15 11 14 cpr { ⟨ ( Base ‘ ndx ) , dom 𝑢 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑢 ⟩ }
16 csts sSet
17 cts TopSet
18 6 17 cfv ( TopSet ‘ ndx )
19 cutop unifTop
20 8 19 cfv ( unifTop ‘ 𝑢 )
21 18 20 cop ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) ⟩
22 15 21 16 co ( { ⟨ ( Base ‘ ndx ) , dom 𝑢 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑢 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) ⟩ )
23 1 4 22 cmpt ( 𝑢 ran UnifOn ↦ ( { ⟨ ( Base ‘ ndx ) , dom 𝑢 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑢 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) ⟩ ) )
24 0 23 wceq toUnifSp = ( 𝑢 ran UnifOn ↦ ( { ⟨ ( Base ‘ ndx ) , dom 𝑢 ⟩ , ⟨ ( UnifSet ‘ ndx ) , 𝑢 ⟩ } sSet ⟨ ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) ⟩ ) )