Database
BASIC TOPOLOGY
Filters and filter bases
Topological rings, fields, vector spaces
df-tvc
Metamath Proof Explorer
Description: Define a topological left vector space, which is a topological module over
a topological division ring. (Contributed by Mario Carneiro , 5-Oct-2015)
Ref
Expression
Assertion
df-tvc
⊢ TopVec = { 𝑤 ∈ TopMod ∣ ( Scalar ‘ 𝑤 ) ∈ TopDRing }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ctvc
⊢ TopVec
1
vw
⊢ 𝑤
2
ctlm
⊢ TopMod
3
csca
⊢ Scalar
4
1
cv
⊢ 𝑤
5
4 3
cfv
⊢ ( Scalar ‘ 𝑤 )
6
ctdrg
⊢ TopDRing
7
5 6
wcel
⊢ ( Scalar ‘ 𝑤 ) ∈ TopDRing
8
7 1 2
crab
⊢ { 𝑤 ∈ TopMod ∣ ( Scalar ‘ 𝑤 ) ∈ TopDRing }
9
0 8
wceq
⊢ TopVec = { 𝑤 ∈ TopMod ∣ ( Scalar ‘ 𝑤 ) ∈ TopDRing }