Metamath Proof Explorer


Definition df-ucn

Description: Define a function on two uniform structures which value is the set of uniformly continuous functions from the first uniform structure to the second. A function f is uniformly continuous if, roughly speaking, it is possible to guarantee that ( fx ) and ( fy ) be as close to each other as we please by requiring only that x and y are sufficiently close to each other; unlike ordinary continuity, the maximum distance between ( fx ) and ( fy ) cannot depend on x and y themselves. This formulation is the definition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion df-ucn Cnu = ( 𝑢 ran UnifOn , 𝑣 ran UnifOn ↦ { 𝑓 ∈ ( dom 𝑣m dom 𝑢 ) ∣ ∀ 𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cucn Cnu
1 vu 𝑢
2 cust UnifOn
3 2 crn ran UnifOn
4 3 cuni ran UnifOn
5 vv 𝑣
6 vf 𝑓
7 5 cv 𝑣
8 7 cuni 𝑣
9 8 cdm dom 𝑣
10 cmap m
11 1 cv 𝑢
12 11 cuni 𝑢
13 12 cdm dom 𝑢
14 9 13 10 co ( dom 𝑣m dom 𝑢 )
15 vs 𝑠
16 vr 𝑟
17 vx 𝑥
18 vy 𝑦
19 17 cv 𝑥
20 16 cv 𝑟
21 18 cv 𝑦
22 19 21 20 wbr 𝑥 𝑟 𝑦
23 6 cv 𝑓
24 19 23 cfv ( 𝑓𝑥 )
25 15 cv 𝑠
26 21 23 cfv ( 𝑓𝑦 )
27 24 26 25 wbr ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 )
28 22 27 wi ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) )
29 28 18 13 wral 𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) )
30 29 17 13 wral 𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) )
31 30 16 11 wrex 𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) )
32 31 15 7 wral 𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) )
33 32 6 14 crab { 𝑓 ∈ ( dom 𝑣m dom 𝑢 ) ∣ ∀ 𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) ) }
34 1 5 4 4 33 cmpo ( 𝑢 ran UnifOn , 𝑣 ran UnifOn ↦ { 𝑓 ∈ ( dom 𝑣m dom 𝑢 ) ∣ ∀ 𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) ) } )
35 0 34 wceq Cnu = ( 𝑢 ran UnifOn , 𝑣 ran UnifOn ↦ { 𝑓 ∈ ( dom 𝑣m dom 𝑢 ) ∣ ∀ 𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓𝑥 ) 𝑠 ( 𝑓𝑦 ) ) } )