Step |
Hyp |
Ref |
Expression |
0 |
|
cucn |
⊢ Cnu |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cust |
⊢ UnifOn |
3 |
2
|
crn |
⊢ ran UnifOn |
4 |
3
|
cuni |
⊢ ∪ ran UnifOn |
5 |
|
vv |
⊢ 𝑣 |
6 |
|
vf |
⊢ 𝑓 |
7 |
5
|
cv |
⊢ 𝑣 |
8 |
7
|
cuni |
⊢ ∪ 𝑣 |
9 |
8
|
cdm |
⊢ dom ∪ 𝑣 |
10 |
|
cmap |
⊢ ↑m |
11 |
1
|
cv |
⊢ 𝑢 |
12 |
11
|
cuni |
⊢ ∪ 𝑢 |
13 |
12
|
cdm |
⊢ dom ∪ 𝑢 |
14 |
9 13 10
|
co |
⊢ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) |
15 |
|
vs |
⊢ 𝑠 |
16 |
|
vr |
⊢ 𝑟 |
17 |
|
vx |
⊢ 𝑥 |
18 |
|
vy |
⊢ 𝑦 |
19 |
17
|
cv |
⊢ 𝑥 |
20 |
16
|
cv |
⊢ 𝑟 |
21 |
18
|
cv |
⊢ 𝑦 |
22 |
19 21 20
|
wbr |
⊢ 𝑥 𝑟 𝑦 |
23 |
6
|
cv |
⊢ 𝑓 |
24 |
19 23
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
25 |
15
|
cv |
⊢ 𝑠 |
26 |
21 23
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
27 |
24 26 25
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) |
28 |
22 27
|
wi |
⊢ ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) |
29 |
28 18 13
|
wral |
⊢ ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) |
30 |
29 17 13
|
wral |
⊢ ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) |
31 |
30 16 11
|
wrex |
⊢ ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) |
32 |
31 15 7
|
wral |
⊢ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) |
33 |
32 6 14
|
crab |
⊢ { 𝑓 ∈ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) ∣ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } |
34 |
1 5 4 4 33
|
cmpo |
⊢ ( 𝑢 ∈ ∪ ran UnifOn , 𝑣 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) ∣ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |
35 |
0 34
|
wceq |
⊢ Cnu = ( 𝑢 ∈ ∪ ran UnifOn , 𝑣 ∈ ∪ ran UnifOn ↦ { 𝑓 ∈ ( dom ∪ 𝑣 ↑m dom ∪ 𝑢 ) ∣ ∀ 𝑠 ∈ 𝑣 ∃ 𝑟 ∈ 𝑢 ∀ 𝑥 ∈ dom ∪ 𝑢 ∀ 𝑦 ∈ dom ∪ 𝑢 ( 𝑥 𝑟 𝑦 → ( 𝑓 ‘ 𝑥 ) 𝑠 ( 𝑓 ‘ 𝑦 ) ) } ) |