Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv this is equivalent to being a domain) such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015) (Revised by Thierry Arnoux, 9-May-2025)

Ref Expression
Assertion df-ufd UFD = { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd UFD
1 vr 𝑟
2 ccrg CRing
3 cabv AbsVal
4 1 cv 𝑟
5 4 3 cfv ( AbsVal ‘ 𝑟 )
6 c0
7 5 6 wne ( AbsVal ‘ 𝑟 ) ≠ ∅
8 vi 𝑖
9 cprmidl PrmIdeal
10 4 9 cfv ( PrmIdeal ‘ 𝑟 )
11 c0g 0g
12 4 11 cfv ( 0g𝑟 )
13 12 csn { ( 0g𝑟 ) }
14 13 csn { { ( 0g𝑟 ) } }
15 10 14 cdif ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } )
16 8 cv 𝑖
17 crpm RPrime
18 4 17 cfv ( RPrime ‘ 𝑟 )
19 16 18 cin ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) )
20 19 6 wne ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅
21 20 8 15 wral 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅
22 7 21 wa ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ )
23 22 1 2 crab { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) }
24 0 23 wceq UFD = { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) }