Step |
Hyp |
Ref |
Expression |
0 |
|
cufd |
⊢ UFD |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
ccrg |
⊢ CRing |
3 |
|
cabv |
⊢ AbsVal |
4 |
1
|
cv |
⊢ 𝑟 |
5 |
4 3
|
cfv |
⊢ ( AbsVal ‘ 𝑟 ) |
6 |
|
c0 |
⊢ ∅ |
7 |
5 6
|
wne |
⊢ ( AbsVal ‘ 𝑟 ) ≠ ∅ |
8 |
|
vi |
⊢ 𝑖 |
9 |
|
cprmidl |
⊢ PrmIdeal |
10 |
4 9
|
cfv |
⊢ ( PrmIdeal ‘ 𝑟 ) |
11 |
|
c0g |
⊢ 0g |
12 |
4 11
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
13 |
12
|
csn |
⊢ { ( 0g ‘ 𝑟 ) } |
14 |
13
|
csn |
⊢ { { ( 0g ‘ 𝑟 ) } } |
15 |
10 14
|
cdif |
⊢ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) |
16 |
8
|
cv |
⊢ 𝑖 |
17 |
|
crpm |
⊢ RPrime |
18 |
4 17
|
cfv |
⊢ ( RPrime ‘ 𝑟 ) |
19 |
16 18
|
cin |
⊢ ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) |
20 |
19 6
|
wne |
⊢ ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ |
21 |
20 8 15
|
wral |
⊢ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ |
22 |
7 21
|
wa |
⊢ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) |
23 |
22 1 2
|
crab |
⊢ { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) } |
24 |
0 23
|
wceq |
⊢ UFD = { 𝑟 ∈ CRing ∣ ( ( AbsVal ‘ 𝑟 ) ≠ ∅ ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g ‘ 𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ ) } |