Metamath Proof Explorer


Definition df-un

Description: Define the union of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } u. { 1 , 8 } ) = { 1 , 3 , 8 } ( ex-un ). Contrast this operation with difference ( A \ B ) ( df-dif ) and intersection ( A i^i B ) ( df-in ). For an alternate definition in terms of class difference, requiring no dummy variables, see dfun2 . For union defined in terms of intersection, see dfun3 . (Contributed by NM, 23-Aug-1993)

Ref Expression
Assertion df-un ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 cun ( 𝐴𝐵 )
3 vx 𝑥
4 3 cv 𝑥
5 4 0 wcel 𝑥𝐴
6 4 1 wcel 𝑥𝐵
7 5 6 wo ( 𝑥𝐴𝑥𝐵 )
8 7 3 cab { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }
9 2 8 wceq ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }