Metamath Proof Explorer


Definition df-unc

Description: Define the uncurrying of F , which takes a function producing functions, and transforms it into a two-argument function. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-unc uncurry 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐹𝑥 ) 𝑧 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF 𝐹
1 0 cunc uncurry 𝐹
2 vx 𝑥
3 vy 𝑦
4 vz 𝑧
5 3 cv 𝑦
6 2 cv 𝑥
7 6 0 cfv ( 𝐹𝑥 )
8 4 cv 𝑧
9 5 8 7 wbr 𝑦 ( 𝐹𝑥 ) 𝑧
10 9 2 3 4 coprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐹𝑥 ) 𝑧 }
11 1 10 wceq uncurry 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝑦 ( 𝐹𝑥 ) 𝑧 }