Metamath Proof Explorer


Definition df-undef

Description: Define the undefined value function, whose value at set s is guaranteed not to be a member of s (see pwuninel ). (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion df-undef Undef = ( 𝑠 ∈ V ↦ 𝒫 𝑠 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cund Undef
1 vs 𝑠
2 cvv V
3 1 cv 𝑠
4 3 cuni 𝑠
5 4 cpw 𝒫 𝑠
6 1 2 5 cmpt ( 𝑠 ∈ V ↦ 𝒫 𝑠 )
7 0 6 wceq Undef = ( 𝑠 ∈ V ↦ 𝒫 𝑠 )