Metamath Proof Explorer


Definition df-unop

Description: Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-unop UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuo UniOp
1 vt 𝑡
2 1 cv 𝑡
3 chba
4 3 3 2 wfo 𝑡 : ℋ –onto→ ℋ
5 vx 𝑥
6 vy 𝑦
7 5 cv 𝑥
8 7 2 cfv ( 𝑡𝑥 )
9 csp ·ih
10 6 cv 𝑦
11 10 2 cfv ( 𝑡𝑦 )
12 8 11 9 co ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) )
13 7 10 9 co ( 𝑥 ·ih 𝑦 )
14 12 13 wceq ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 )
15 14 6 3 wral 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 )
16 15 5 3 wral 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 )
17 4 16 wa ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) )
18 17 1 cab { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) }
19 0 18 wceq UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡𝑥 ) ·ih ( 𝑡𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) }