Step |
Hyp |
Ref |
Expression |
0 |
|
cuo |
⊢ UniOp |
1 |
|
vt |
⊢ 𝑡 |
2 |
1
|
cv |
⊢ 𝑡 |
3 |
|
chba |
⊢ ℋ |
4 |
3 3 2
|
wfo |
⊢ 𝑡 : ℋ –onto→ ℋ |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vy |
⊢ 𝑦 |
7 |
5
|
cv |
⊢ 𝑥 |
8 |
7 2
|
cfv |
⊢ ( 𝑡 ‘ 𝑥 ) |
9 |
|
csp |
⊢ ·ih |
10 |
6
|
cv |
⊢ 𝑦 |
11 |
10 2
|
cfv |
⊢ ( 𝑡 ‘ 𝑦 ) |
12 |
8 11 9
|
co |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) |
13 |
7 10 9
|
co |
⊢ ( 𝑥 ·ih 𝑦 ) |
14 |
12 13
|
wceq |
⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
15 |
14 6 3
|
wral |
⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
16 |
15 5 3
|
wral |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
17 |
4 16
|
wa |
⊢ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
18 |
17 1
|
cab |
⊢ { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |
19 |
0 18
|
wceq |
⊢ UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |