Step |
Hyp |
Ref |
Expression |
0 |
|
cusp |
⊢ UnifSp |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cuss |
⊢ UnifSt |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( UnifSt ‘ 𝑓 ) |
5 |
|
cust |
⊢ UnifOn |
6 |
|
cbs |
⊢ Base |
7 |
3 6
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
8 |
7 5
|
cfv |
⊢ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
9 |
4 8
|
wcel |
⊢ ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
10 |
|
ctopn |
⊢ TopOpen |
11 |
3 10
|
cfv |
⊢ ( TopOpen ‘ 𝑓 ) |
12 |
|
cutop |
⊢ unifTop |
13 |
4 12
|
cfv |
⊢ ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
14 |
11 13
|
wceq |
⊢ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
15 |
9 14
|
wa |
⊢ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) |
16 |
15 1
|
cab |
⊢ { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |
17 |
0 16
|
wceq |
⊢ UnifSp = { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |