Metamath Proof Explorer


Definition df-uspgr

Description: Define the class of all undirected simple pseudographs (which could have loops). An undirected simple pseudograph is a special undirected pseudograph (see uspgrupgr ) or a special undirected simple hypergraph (see uspgrushgr ), consisting of a set v (of "vertices") and an injective (one-to-one) function e (representing (indexed) "edges") into subsets of v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. In contrast to a pseudograph, there is at most one edge between two vertices resp. at most one loop for a vertex. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 13-Oct-2020)

Ref Expression
Assertion df-uspgr USPGraph = { 𝑔[ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( iEdg ‘ 𝑔 ) / 𝑒 ] 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuspgr USPGraph
1 vg 𝑔
2 cvtx Vtx
3 1 cv 𝑔
4 3 2 cfv ( Vtx ‘ 𝑔 )
5 vv 𝑣
6 ciedg iEdg
7 3 6 cfv ( iEdg ‘ 𝑔 )
8 ve 𝑒
9 8 cv 𝑒
10 9 cdm dom 𝑒
11 vx 𝑥
12 5 cv 𝑣
13 12 cpw 𝒫 𝑣
14 c0
15 14 csn { ∅ }
16 13 15 cdif ( 𝒫 𝑣 ∖ { ∅ } )
17 chash
18 11 cv 𝑥
19 18 17 cfv ( ♯ ‘ 𝑥 )
20 cle
21 c2 2
22 19 21 20 wbr ( ♯ ‘ 𝑥 ) ≤ 2
23 22 11 16 crab { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
24 10 23 9 wf1 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
25 24 8 7 wsbc [ ( iEdg ‘ 𝑔 ) / 𝑒 ] 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
26 25 5 4 wsbc [ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( iEdg ‘ 𝑔 ) / 𝑒 ] 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 }
27 26 1 cab { 𝑔[ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( iEdg ‘ 𝑔 ) / 𝑒 ] 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } }
28 0 27 wceq USPGraph = { 𝑔[ ( Vtx ‘ 𝑔 ) / 𝑣 ] [ ( iEdg ‘ 𝑔 ) / 𝑒 ] 𝑒 : dom 𝑒1-1→ { 𝑥 ∈ ( 𝒫 𝑣 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } }