| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cust | ⊢ UnifOn | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vu | ⊢ 𝑢 | 
						
							| 4 | 3 | cv | ⊢ 𝑢 | 
						
							| 5 | 1 | cv | ⊢ 𝑥 | 
						
							| 6 | 5 5 | cxp | ⊢ ( 𝑥  ×  𝑥 ) | 
						
							| 7 | 6 | cpw | ⊢ 𝒫  ( 𝑥  ×  𝑥 ) | 
						
							| 8 | 4 7 | wss | ⊢ 𝑢  ⊆  𝒫  ( 𝑥  ×  𝑥 ) | 
						
							| 9 | 6 4 | wcel | ⊢ ( 𝑥  ×  𝑥 )  ∈  𝑢 | 
						
							| 10 |  | vv | ⊢ 𝑣 | 
						
							| 11 |  | vw | ⊢ 𝑤 | 
						
							| 12 | 10 | cv | ⊢ 𝑣 | 
						
							| 13 | 11 | cv | ⊢ 𝑤 | 
						
							| 14 | 12 13 | wss | ⊢ 𝑣  ⊆  𝑤 | 
						
							| 15 | 13 4 | wcel | ⊢ 𝑤  ∈  𝑢 | 
						
							| 16 | 14 15 | wi | ⊢ ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 ) | 
						
							| 17 | 16 11 7 | wral | ⊢ ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 ) | 
						
							| 18 | 12 13 | cin | ⊢ ( 𝑣  ∩  𝑤 ) | 
						
							| 19 | 18 4 | wcel | ⊢ ( 𝑣  ∩  𝑤 )  ∈  𝑢 | 
						
							| 20 | 19 11 4 | wral | ⊢ ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢 | 
						
							| 21 |  | cid | ⊢  I | 
						
							| 22 | 21 5 | cres | ⊢ (  I   ↾  𝑥 ) | 
						
							| 23 | 22 12 | wss | ⊢ (  I   ↾  𝑥 )  ⊆  𝑣 | 
						
							| 24 | 12 | ccnv | ⊢ ◡ 𝑣 | 
						
							| 25 | 24 4 | wcel | ⊢ ◡ 𝑣  ∈  𝑢 | 
						
							| 26 | 13 13 | ccom | ⊢ ( 𝑤  ∘  𝑤 ) | 
						
							| 27 | 26 12 | wss | ⊢ ( 𝑤  ∘  𝑤 )  ⊆  𝑣 | 
						
							| 28 | 27 11 4 | wrex | ⊢ ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 | 
						
							| 29 | 23 25 28 | w3a | ⊢ ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) | 
						
							| 30 | 17 20 29 | w3a | ⊢ ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) | 
						
							| 31 | 30 10 4 | wral | ⊢ ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) | 
						
							| 32 | 8 9 31 | w3a | ⊢ ( 𝑢  ⊆  𝒫  ( 𝑥  ×  𝑥 )  ∧  ( 𝑥  ×  𝑥 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) | 
						
							| 33 | 32 3 | cab | ⊢ { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑥  ×  𝑥 )  ∧  ( 𝑥  ×  𝑥 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) } | 
						
							| 34 | 1 2 33 | cmpt | ⊢ ( 𝑥  ∈  V  ↦  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑥  ×  𝑥 )  ∧  ( 𝑥  ×  𝑥 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) } ) | 
						
							| 35 | 0 34 | wceq | ⊢ UnifOn  =  ( 𝑥  ∈  V  ↦  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑥  ×  𝑥 )  ∧  ( 𝑥  ×  𝑥 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑥  ×  𝑥 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑥 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) } ) |