| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvc |
⊢ CVecOLD |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
vs |
⊢ 𝑠 |
| 3 |
1
|
cv |
⊢ 𝑔 |
| 4 |
|
cablo |
⊢ AbelOp |
| 5 |
3 4
|
wcel |
⊢ 𝑔 ∈ AbelOp |
| 6 |
2
|
cv |
⊢ 𝑠 |
| 7 |
|
cc |
⊢ ℂ |
| 8 |
3
|
crn |
⊢ ran 𝑔 |
| 9 |
7 8
|
cxp |
⊢ ( ℂ × ran 𝑔 ) |
| 10 |
9 8 6
|
wf |
⊢ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 |
| 11 |
|
vx |
⊢ 𝑥 |
| 12 |
|
c1 |
⊢ 1 |
| 13 |
11
|
cv |
⊢ 𝑥 |
| 14 |
12 13 6
|
co |
⊢ ( 1 𝑠 𝑥 ) |
| 15 |
14 13
|
wceq |
⊢ ( 1 𝑠 𝑥 ) = 𝑥 |
| 16 |
|
vy |
⊢ 𝑦 |
| 17 |
|
vz |
⊢ 𝑧 |
| 18 |
16
|
cv |
⊢ 𝑦 |
| 19 |
17
|
cv |
⊢ 𝑧 |
| 20 |
13 19 3
|
co |
⊢ ( 𝑥 𝑔 𝑧 ) |
| 21 |
18 20 6
|
co |
⊢ ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) |
| 22 |
18 13 6
|
co |
⊢ ( 𝑦 𝑠 𝑥 ) |
| 23 |
18 19 6
|
co |
⊢ ( 𝑦 𝑠 𝑧 ) |
| 24 |
22 23 3
|
co |
⊢ ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) |
| 25 |
21 24
|
wceq |
⊢ ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) |
| 26 |
25 17 8
|
wral |
⊢ ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) |
| 27 |
|
caddc |
⊢ + |
| 28 |
18 19 27
|
co |
⊢ ( 𝑦 + 𝑧 ) |
| 29 |
28 13 6
|
co |
⊢ ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) |
| 30 |
19 13 6
|
co |
⊢ ( 𝑧 𝑠 𝑥 ) |
| 31 |
22 30 3
|
co |
⊢ ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) |
| 32 |
29 31
|
wceq |
⊢ ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) |
| 33 |
|
cmul |
⊢ · |
| 34 |
18 19 33
|
co |
⊢ ( 𝑦 · 𝑧 ) |
| 35 |
34 13 6
|
co |
⊢ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) |
| 36 |
18 30 6
|
co |
⊢ ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) |
| 37 |
35 36
|
wceq |
⊢ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) |
| 38 |
32 37
|
wa |
⊢ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) |
| 39 |
38 17 7
|
wral |
⊢ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) |
| 40 |
26 39
|
wa |
⊢ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) |
| 41 |
40 16 7
|
wral |
⊢ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) |
| 42 |
15 41
|
wa |
⊢ ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) |
| 43 |
42 11 8
|
wral |
⊢ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) |
| 44 |
5 10 43
|
w3a |
⊢ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) |
| 45 |
44 1 2
|
copab |
⊢ { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } |
| 46 |
0 45
|
wceq |
⊢ CVecOLD = { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } |