Metamath Proof Explorer


Definition df-vd3

Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (New usage is discouraged.)

Ref Expression
Assertion df-vd3 ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) ↔ ( ( 𝜑𝜓𝜒 ) → 𝜃 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph 𝜑
1 wps 𝜓
2 wch 𝜒
3 wth 𝜃
4 0 1 2 3 wvd3 (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    )
5 0 1 2 w3a ( 𝜑𝜓𝜒 )
6 5 3 wi ( ( 𝜑𝜓𝜒 ) → 𝜃 )
7 4 6 wb ( (    𝜑    ,    𝜓    ,    𝜒    ▶    𝜃    ) ↔ ( ( 𝜑𝜓𝜒 ) → 𝜃 ) )