Step |
Hyp |
Ref |
Expression |
0 |
|
cvma |
⊢ Λ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cn |
⊢ ℕ |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cprime |
⊢ ℙ |
5 |
3
|
cv |
⊢ 𝑝 |
6 |
|
cdvds |
⊢ ∥ |
7 |
1
|
cv |
⊢ 𝑥 |
8 |
5 7 6
|
wbr |
⊢ 𝑝 ∥ 𝑥 |
9 |
8 3 4
|
crab |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } |
10 |
|
vs |
⊢ 𝑠 |
11 |
|
chash |
⊢ ♯ |
12 |
10
|
cv |
⊢ 𝑠 |
13 |
12 11
|
cfv |
⊢ ( ♯ ‘ 𝑠 ) |
14 |
|
c1 |
⊢ 1 |
15 |
13 14
|
wceq |
⊢ ( ♯ ‘ 𝑠 ) = 1 |
16 |
|
clog |
⊢ log |
17 |
12
|
cuni |
⊢ ∪ 𝑠 |
18 |
17 16
|
cfv |
⊢ ( log ‘ ∪ 𝑠 ) |
19 |
|
cc0 |
⊢ 0 |
20 |
15 18 19
|
cif |
⊢ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) |
21 |
10 9 20
|
csb |
⊢ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) |
22 |
1 2 21
|
cmpt |
⊢ ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |
23 |
0 22
|
wceq |
⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |