Metamath Proof Explorer


Definition df-vma

Description: Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in ApostolNT p. 32. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion df-vma Λ = ( 𝑥 ∈ ℕ ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvma Λ
1 vx 𝑥
2 cn
3 vp 𝑝
4 cprime
5 3 cv 𝑝
6 cdvds
7 1 cv 𝑥
8 5 7 6 wbr 𝑝𝑥
9 8 3 4 crab { 𝑝 ∈ ℙ ∣ 𝑝𝑥 }
10 vs 𝑠
11 chash
12 10 cv 𝑠
13 12 11 cfv ( ♯ ‘ 𝑠 )
14 c1 1
15 13 14 wceq ( ♯ ‘ 𝑠 ) = 1
16 clog log
17 12 cuni 𝑠
18 17 16 cfv ( log ‘ 𝑠 )
19 cc0 0
20 15 18 19 cif if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 )
21 10 9 20 csb { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 )
22 1 2 21 cmpt ( 𝑥 ∈ ℕ ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) )
23 0 22 wceq Λ = ( 𝑥 ∈ ℕ ↦ { 𝑝 ∈ ℙ ∣ 𝑝𝑥 } / 𝑠 if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ 𝑠 ) , 0 ) )