Step |
Hyp |
Ref |
Expression |
0 |
|
cvol |
⊢ vol |
1 |
|
covol |
⊢ vol* |
2 |
|
vx |
⊢ 𝑥 |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
ccnv |
⊢ ◡ vol* |
5 |
|
cr |
⊢ ℝ |
6 |
4 5
|
cima |
⊢ ( ◡ vol* “ ℝ ) |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
7 1
|
cfv |
⊢ ( vol* ‘ 𝑦 ) |
9 |
2
|
cv |
⊢ 𝑥 |
10 |
7 9
|
cin |
⊢ ( 𝑦 ∩ 𝑥 ) |
11 |
10 1
|
cfv |
⊢ ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) |
12 |
|
caddc |
⊢ + |
13 |
7 9
|
cdif |
⊢ ( 𝑦 ∖ 𝑥 ) |
14 |
13 1
|
cfv |
⊢ ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) |
15 |
11 14 12
|
co |
⊢ ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) |
16 |
8 15
|
wceq |
⊢ ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) |
17 |
16 3 6
|
wral |
⊢ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) |
18 |
17 2
|
cab |
⊢ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } |
19 |
1 18
|
cres |
⊢ ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |
20 |
0 19
|
wceq |
⊢ vol = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |