Metamath Proof Explorer


Definition df-vs

Description: Define vector subtraction on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-vs 𝑣 = ( /𝑔 ∘ +𝑣 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnsb 𝑣
1 cgs /𝑔
2 cpv +𝑣
3 1 2 ccom ( /𝑔 ∘ +𝑣 )
4 0 3 wceq 𝑣 = ( /𝑔 ∘ +𝑣 )