| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cvtxdg | ⊢ VtxDeg | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | cvtx | ⊢ Vtx | 
						
							| 4 | 1 | cv | ⊢ 𝑔 | 
						
							| 5 | 4 3 | cfv | ⊢ ( Vtx ‘ 𝑔 ) | 
						
							| 6 |  | vv | ⊢ 𝑣 | 
						
							| 7 |  | ciedg | ⊢ iEdg | 
						
							| 8 | 4 7 | cfv | ⊢ ( iEdg ‘ 𝑔 ) | 
						
							| 9 |  | ve | ⊢ 𝑒 | 
						
							| 10 |  | vu | ⊢ 𝑢 | 
						
							| 11 | 6 | cv | ⊢ 𝑣 | 
						
							| 12 |  | chash | ⊢ ♯ | 
						
							| 13 |  | vx | ⊢ 𝑥 | 
						
							| 14 | 9 | cv | ⊢ 𝑒 | 
						
							| 15 | 14 | cdm | ⊢ dom  𝑒 | 
						
							| 16 | 10 | cv | ⊢ 𝑢 | 
						
							| 17 | 13 | cv | ⊢ 𝑥 | 
						
							| 18 | 17 14 | cfv | ⊢ ( 𝑒 ‘ 𝑥 ) | 
						
							| 19 | 16 18 | wcel | ⊢ 𝑢  ∈  ( 𝑒 ‘ 𝑥 ) | 
						
							| 20 | 19 13 15 | crab | ⊢ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } | 
						
							| 21 | 20 12 | cfv | ⊢ ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } ) | 
						
							| 22 |  | cxad | ⊢  +𝑒 | 
						
							| 23 | 16 | csn | ⊢ { 𝑢 } | 
						
							| 24 | 18 23 | wceq | ⊢ ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } | 
						
							| 25 | 24 13 15 | crab | ⊢ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } | 
						
							| 26 | 25 12 | cfv | ⊢ ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) | 
						
							| 27 | 21 26 22 | co | ⊢ ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) | 
						
							| 28 | 10 11 27 | cmpt | ⊢ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 29 | 9 8 28 | csb | ⊢ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 30 | 6 5 29 | csb | ⊢ ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 31 | 1 2 30 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 32 | 0 31 | wceq | ⊢ VtxDeg  =  ( 𝑔  ∈  V  ↦  ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) |