Step |
Hyp |
Ref |
Expression |
0 |
|
cvtxdg |
⊢ VtxDeg |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
cvtx |
⊢ Vtx |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
6 |
|
vv |
⊢ 𝑣 |
7 |
|
ciedg |
⊢ iEdg |
8 |
4 7
|
cfv |
⊢ ( iEdg ‘ 𝑔 ) |
9 |
|
ve |
⊢ 𝑒 |
10 |
|
vu |
⊢ 𝑢 |
11 |
6
|
cv |
⊢ 𝑣 |
12 |
|
chash |
⊢ ♯ |
13 |
|
vx |
⊢ 𝑥 |
14 |
9
|
cv |
⊢ 𝑒 |
15 |
14
|
cdm |
⊢ dom 𝑒 |
16 |
10
|
cv |
⊢ 𝑢 |
17 |
13
|
cv |
⊢ 𝑥 |
18 |
17 14
|
cfv |
⊢ ( 𝑒 ‘ 𝑥 ) |
19 |
16 18
|
wcel |
⊢ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) |
20 |
19 13 15
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } |
21 |
20 12
|
cfv |
⊢ ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) |
22 |
|
cxad |
⊢ +𝑒 |
23 |
16
|
csn |
⊢ { 𝑢 } |
24 |
18 23
|
wceq |
⊢ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } |
25 |
24 13 15
|
crab |
⊢ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } |
26 |
25 12
|
cfv |
⊢ ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) |
27 |
21 26 22
|
co |
⊢ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) |
28 |
10 11 27
|
cmpt |
⊢ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
29 |
9 8 28
|
csb |
⊢ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
30 |
6 5 29
|
csb |
⊢ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) |
31 |
1 2 30
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
32 |
0 31
|
wceq |
⊢ VtxDeg = ( 𝑔 ∈ V ↦ ⦋ ( Vtx ‘ 𝑔 ) / 𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 ) / 𝑒 ⦌ ( 𝑢 ∈ 𝑣 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ ( 𝑒 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom 𝑒 ∣ ( 𝑒 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |