Metamath Proof Explorer


Definition df-watsN

Description: Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference) atom" d . These are all atoms not in the polarity of { d } ) , which is the hyperplane determined by d . Definition of set W in Crawley p. 111. (Contributed by NM, 26-Jan-2012)

Ref Expression
Assertion df-watsN WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwpointsN WAtoms
1 vk 𝑘
2 cvv V
3 vd 𝑑
4 catm Atoms
5 1 cv 𝑘
6 5 4 cfv ( Atoms ‘ 𝑘 )
7 cpolN 𝑃
8 5 7 cfv ( ⊥𝑃𝑘 )
9 3 cv 𝑑
10 9 csn { 𝑑 }
11 10 8 cfv ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } )
12 6 11 cdif ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) )
13 3 6 12 cmpt ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) )
14 1 2 13 cmpt ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) ) )
15 0 14 wceq WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃𝑘 ) ‘ { 𝑑 } ) ) ) )