Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
df-watsN
Metamath Proof Explorer
Description: Define W-atoms corresponding to an arbitrary "fiducial (i.e. reference)
atom" d . These are all atoms not in the polarity of { d } ) ,
which is the hyperplane determined by d . Definition of set W in
Crawley p. 111. (Contributed by NM , 26-Jan-2012)
Ref
Expression
Assertion
df-watsN
⊢ WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cwpointsN
⊢ WAtoms
1
vk
⊢ 𝑘
2
cvv
⊢ V
3
vd
⊢ 𝑑
4
catm
⊢ Atoms
5
1
cv
⊢ 𝑘
6
5 4
cfv
⊢ ( Atoms ‘ 𝑘 )
7
cpolN
⊢ ⊥𝑃
8
5 7
cfv
⊢ ( ⊥𝑃 ‘ 𝑘 )
9
3
cv
⊢ 𝑑
10
9
csn
⊢ { 𝑑 }
11
10 8
cfv
⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } )
12
6 11
cdif
⊢ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) )
13
3 6 12
cmpt
⊢ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) )
14
1 2 13
cmpt
⊢ ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ) )
15
0 14
wceq
⊢ WAtoms = ( 𝑘 ∈ V ↦ ( 𝑑 ∈ ( Atoms ‘ 𝑘 ) ↦ ( ( Atoms ‘ 𝑘 ) ∖ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ { 𝑑 } ) ) ) )