Metamath Proof Explorer


Definition df-wina

Description: An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows _om as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion df-wina Inaccw = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 𝑦𝑧 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwina Inaccw
1 vx 𝑥
2 1 cv 𝑥
3 c0
4 2 3 wne 𝑥 ≠ ∅
5 ccf cf
6 2 5 cfv ( cf ‘ 𝑥 )
7 6 2 wceq ( cf ‘ 𝑥 ) = 𝑥
8 vy 𝑦
9 vz 𝑧
10 8 cv 𝑦
11 csdm
12 9 cv 𝑧
13 10 12 11 wbr 𝑦𝑧
14 13 9 2 wrex 𝑧𝑥 𝑦𝑧
15 14 8 2 wral 𝑦𝑥𝑧𝑥 𝑦𝑧
16 4 7 15 w3a ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 𝑦𝑧 )
17 16 1 cab { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 𝑦𝑧 ) }
18 0 17 wceq Inaccw = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑥𝑧𝑥 𝑦𝑧 ) }