Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weakly and strongly inaccessible cardinals
df-wina
Metamath Proof Explorer
Description: An ordinal is weakly inaccessible iff it is a regular limit cardinal.
Note that our definition allows _om as a weakly inaccessible
cardinal. (Contributed by Mario Carneiro , 22-Jun-2013)
Ref
Expression
Assertion
df-wina
⊢ Inaccw = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cwina
⊢ Inaccw
1
vx
⊢ 𝑥
2
1
cv
⊢ 𝑥
3
c0
⊢ ∅
4
2 3
wne
⊢ 𝑥 ≠ ∅
5
ccf
⊢ cf
6
2 5
cfv
⊢ ( cf ‘ 𝑥 )
7
6 2
wceq
⊢ ( cf ‘ 𝑥 ) = 𝑥
8
vy
⊢ 𝑦
9
vz
⊢ 𝑧
10
8
cv
⊢ 𝑦
11
csdm
⊢ ≺
12
9
cv
⊢ 𝑧
13
10 12 11
wbr
⊢ 𝑦 ≺ 𝑧
14
13 9 2
wrex
⊢ ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧
15
14 8 2
wral
⊢ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧
16
4 7 15
w3a
⊢ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 )
17
16 1
cab
⊢ { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) }
18
0 17
wceq
⊢ Inaccw = { 𝑥 ∣ ( 𝑥 ≠ ∅ ∧ ( cf ‘ 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝑥 𝑦 ≺ 𝑧 ) }