Step |
Hyp |
Ref |
Expression |
0 |
|
cwlkson |
⊢ WalksOn |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
va |
⊢ 𝑎 |
4 |
|
cvtx |
⊢ Vtx |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
7 |
|
vb |
⊢ 𝑏 |
8 |
|
vf |
⊢ 𝑓 |
9 |
|
vp |
⊢ 𝑝 |
10 |
8
|
cv |
⊢ 𝑓 |
11 |
|
cwlks |
⊢ Walks |
12 |
5 11
|
cfv |
⊢ ( Walks ‘ 𝑔 ) |
13 |
9
|
cv |
⊢ 𝑝 |
14 |
10 13 12
|
wbr |
⊢ 𝑓 ( Walks ‘ 𝑔 ) 𝑝 |
15 |
|
cc0 |
⊢ 0 |
16 |
15 13
|
cfv |
⊢ ( 𝑝 ‘ 0 ) |
17 |
3
|
cv |
⊢ 𝑎 |
18 |
16 17
|
wceq |
⊢ ( 𝑝 ‘ 0 ) = 𝑎 |
19 |
|
chash |
⊢ ♯ |
20 |
10 19
|
cfv |
⊢ ( ♯ ‘ 𝑓 ) |
21 |
20 13
|
cfv |
⊢ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) |
22 |
7
|
cv |
⊢ 𝑏 |
23 |
21 22
|
wceq |
⊢ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 |
24 |
14 18 23
|
w3a |
⊢ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) |
25 |
24 8 9
|
copab |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } |
26 |
3 7 6 6 25
|
cmpo |
⊢ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) |
27 |
1 2 26
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |
28 |
0 27
|
wceq |
⊢ WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) ) |