Database
GRAPH THEORY
Walks, paths and cycles
Walks as words
df-wspthsn
Metamath Proof Explorer
Description: Define the collection of simple paths of a fixed length as word over the
set of vertices. (Contributed by Alexander van der Vekens , 1-Mar-2018)
(Revised by AV , 11-May-2021)
Ref
Expression
Assertion
df-wspthsn
⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cwwspthsn
⊢ WSPathsN
1
vn
⊢ 𝑛
2
cn0
⊢ ℕ0
3
vg
⊢ 𝑔
4
cvv
⊢ V
5
vw
⊢ 𝑤
6
1
cv
⊢ 𝑛
7
cwwlksn
⊢ WWalksN
8
3
cv
⊢ 𝑔
9
6 8 7
co
⊢ ( 𝑛 WWalksN 𝑔 )
10
vf
⊢ 𝑓
11
10
cv
⊢ 𝑓
12
cspths
⊢ SPaths
13
8 12
cfv
⊢ ( SPaths ‘ 𝑔 )
14
5
cv
⊢ 𝑤
15
11 14 13
wbr
⊢ 𝑓 ( SPaths ‘ 𝑔 ) 𝑤
16
15 10
wex
⊢ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤
17
16 5 9
crab
⊢ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 }
18
1 3 2 4 17
cmpo
⊢ ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )
19
0 18
wceq
⊢ WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )