Metamath Proof Explorer


Definition df-wspthsn

Description: Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion df-wspthsn WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwspthsn WSPathsN
1 vn 𝑛
2 cn0 0
3 vg 𝑔
4 cvv V
5 vw 𝑤
6 1 cv 𝑛
7 cwwlksn WWalksN
8 3 cv 𝑔
9 6 8 7 co ( 𝑛 WWalksN 𝑔 )
10 vf 𝑓
11 10 cv 𝑓
12 cspths SPaths
13 8 12 cfv ( SPaths ‘ 𝑔 )
14 5 cv 𝑤
15 11 14 13 wbr 𝑓 ( SPaths ‘ 𝑔 ) 𝑤
16 15 10 wex 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤
17 16 5 9 crab { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 }
18 1 3 2 4 17 cmpo ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )
19 0 18 wceq WSPathsN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝑔 ) 𝑤 } )