| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cwwspthsnon | ⊢  WSPathsNOn | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cn0 | ⊢ ℕ0 | 
						
							| 3 |  | vg | ⊢ 𝑔 | 
						
							| 4 |  | cvv | ⊢ V | 
						
							| 5 |  | va | ⊢ 𝑎 | 
						
							| 6 |  | cvtx | ⊢ Vtx | 
						
							| 7 | 3 | cv | ⊢ 𝑔 | 
						
							| 8 | 7 6 | cfv | ⊢ ( Vtx ‘ 𝑔 ) | 
						
							| 9 |  | vb | ⊢ 𝑏 | 
						
							| 10 |  | vw | ⊢ 𝑤 | 
						
							| 11 | 5 | cv | ⊢ 𝑎 | 
						
							| 12 | 1 | cv | ⊢ 𝑛 | 
						
							| 13 |  | cwwlksnon | ⊢  WWalksNOn | 
						
							| 14 | 12 7 13 | co | ⊢ ( 𝑛  WWalksNOn  𝑔 ) | 
						
							| 15 | 9 | cv | ⊢ 𝑏 | 
						
							| 16 | 11 15 14 | co | ⊢ ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 ) | 
						
							| 17 |  | vf | ⊢ 𝑓 | 
						
							| 18 | 17 | cv | ⊢ 𝑓 | 
						
							| 19 |  | cspthson | ⊢ SPathsOn | 
						
							| 20 | 7 19 | cfv | ⊢ ( SPathsOn ‘ 𝑔 ) | 
						
							| 21 | 11 15 20 | co | ⊢ ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) | 
						
							| 22 | 10 | cv | ⊢ 𝑤 | 
						
							| 23 | 18 22 21 | wbr | ⊢ 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 | 
						
							| 24 | 23 17 | wex | ⊢ ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 | 
						
							| 25 | 24 10 16 | crab | ⊢ { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } | 
						
							| 26 | 5 9 8 8 25 | cmpo | ⊢ ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) | 
						
							| 27 | 1 3 2 4 26 | cmpo | ⊢ ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 28 | 0 27 | wceq | ⊢  WSPathsNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) |