Step |
Hyp |
Ref |
Expression |
0 |
|
cwun |
⊢ WUni |
1 |
|
vu |
⊢ 𝑢 |
2 |
1
|
cv |
⊢ 𝑢 |
3 |
2
|
wtr |
⊢ Tr 𝑢 |
4 |
|
c0 |
⊢ ∅ |
5 |
2 4
|
wne |
⊢ 𝑢 ≠ ∅ |
6 |
|
vx |
⊢ 𝑥 |
7 |
6
|
cv |
⊢ 𝑥 |
8 |
7
|
cuni |
⊢ ∪ 𝑥 |
9 |
8 2
|
wcel |
⊢ ∪ 𝑥 ∈ 𝑢 |
10 |
7
|
cpw |
⊢ 𝒫 𝑥 |
11 |
10 2
|
wcel |
⊢ 𝒫 𝑥 ∈ 𝑢 |
12 |
|
vy |
⊢ 𝑦 |
13 |
12
|
cv |
⊢ 𝑦 |
14 |
7 13
|
cpr |
⊢ { 𝑥 , 𝑦 } |
15 |
14 2
|
wcel |
⊢ { 𝑥 , 𝑦 } ∈ 𝑢 |
16 |
15 12 2
|
wral |
⊢ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 |
17 |
9 11 16
|
w3a |
⊢ ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
18 |
17 6 2
|
wral |
⊢ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) |
19 |
3 5 18
|
w3a |
⊢ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) |
20 |
19 1
|
cab |
⊢ { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |
21 |
0 20
|
wceq |
⊢ WUni = { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |