Metamath Proof Explorer


Definition df-wun

Description: The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun ) whereas the analogue for Grothendieck universes requires ax-groth (see grothtsk ). (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-wun WUni = { 𝑢 ∣ ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwun WUni
1 vu 𝑢
2 1 cv 𝑢
3 2 wtr Tr 𝑢
4 c0
5 2 4 wne 𝑢 ≠ ∅
6 vx 𝑥
7 6 cv 𝑥
8 7 cuni 𝑥
9 8 2 wcel 𝑥𝑢
10 7 cpw 𝒫 𝑥
11 10 2 wcel 𝒫 𝑥𝑢
12 vy 𝑦
13 12 cv 𝑦
14 7 13 cpr { 𝑥 , 𝑦 }
15 14 2 wcel { 𝑥 , 𝑦 } ∈ 𝑢
16 15 12 2 wral 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢
17 9 11 16 w3a ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 )
18 17 6 2 wral 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 )
19 3 5 18 w3a ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) )
20 19 1 cab { 𝑢 ∣ ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) }
21 0 20 wceq WUni = { 𝑢 ∣ ( Tr 𝑢𝑢 ≠ ∅ ∧ ∀ 𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀ 𝑦𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) }