| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cwun | ⊢ WUni | 
						
							| 1 |  | vu | ⊢ 𝑢 | 
						
							| 2 | 1 | cv | ⊢ 𝑢 | 
						
							| 3 | 2 | wtr | ⊢ Tr  𝑢 | 
						
							| 4 |  | c0 | ⊢ ∅ | 
						
							| 5 | 2 4 | wne | ⊢ 𝑢  ≠  ∅ | 
						
							| 6 |  | vx | ⊢ 𝑥 | 
						
							| 7 | 6 | cv | ⊢ 𝑥 | 
						
							| 8 | 7 | cuni | ⊢ ∪  𝑥 | 
						
							| 9 | 8 2 | wcel | ⊢ ∪  𝑥  ∈  𝑢 | 
						
							| 10 | 7 | cpw | ⊢ 𝒫  𝑥 | 
						
							| 11 | 10 2 | wcel | ⊢ 𝒫  𝑥  ∈  𝑢 | 
						
							| 12 |  | vy | ⊢ 𝑦 | 
						
							| 13 | 12 | cv | ⊢ 𝑦 | 
						
							| 14 | 7 13 | cpr | ⊢ { 𝑥 ,  𝑦 } | 
						
							| 15 | 14 2 | wcel | ⊢ { 𝑥 ,  𝑦 }  ∈  𝑢 | 
						
							| 16 | 15 12 2 | wral | ⊢ ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 | 
						
							| 17 | 9 11 16 | w3a | ⊢ ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) | 
						
							| 18 | 17 6 2 | wral | ⊢ ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) | 
						
							| 19 | 3 5 18 | w3a | ⊢ ( Tr  𝑢  ∧  𝑢  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) ) | 
						
							| 20 | 19 1 | cab | ⊢ { 𝑢  ∣  ( Tr  𝑢  ∧  𝑢  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) ) } | 
						
							| 21 | 0 20 | wceq | ⊢ WUni  =  { 𝑢  ∣  ( Tr  𝑢  ∧  𝑢  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) ) } |