Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
df-wunc
Metamath Proof Explorer
Description: A function that maps a set x to the smallest weak universe that
contains the elements of the set. (Contributed by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-wunc
⊢ wUniCl = ( 𝑥 ∈ V ↦ ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cwunm
⊢ wUniCl
1
vx
⊢ 𝑥
2
cvv
⊢ V
3
vu
⊢ 𝑢
4
cwun
⊢ WUni
5
1
cv
⊢ 𝑥
6
3
cv
⊢ 𝑢
7
5 6
wss
⊢ 𝑥 ⊆ 𝑢
8
7 3 4
crab
⊢ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 }
9
8
cint
⊢ ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 }
10
1 2 9
cmpt
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } )
11
0 10
wceq
⊢ wUniCl = ( 𝑥 ∈ V ↦ ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } )