Metamath Proof Explorer


Definition df-wunc

Description: A function that maps a set x to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-wunc wUniCl = ( 𝑥 ∈ V ↦ { 𝑢 ∈ WUni ∣ 𝑥𝑢 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwunm wUniCl
1 vx 𝑥
2 cvv V
3 vu 𝑢
4 cwun WUni
5 1 cv 𝑥
6 3 cv 𝑢
7 5 6 wss 𝑥𝑢
8 7 3 4 crab { 𝑢 ∈ WUni ∣ 𝑥𝑢 }
9 8 cint { 𝑢 ∈ WUni ∣ 𝑥𝑢 }
10 1 2 9 cmpt ( 𝑥 ∈ V ↦ { 𝑢 ∈ WUni ∣ 𝑥𝑢 } )
11 0 10 wceq wUniCl = ( 𝑥 ∈ V ↦ { 𝑢 ∈ WUni ∣ 𝑥𝑢 } )