Step |
Hyp |
Ref |
Expression |
0 |
|
cwwlks |
⊢ WWalks |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
cvtx |
⊢ Vtx |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( Vtx ‘ 𝑔 ) |
7 |
6
|
cword |
⊢ Word ( Vtx ‘ 𝑔 ) |
8 |
3
|
cv |
⊢ 𝑤 |
9 |
|
c0 |
⊢ ∅ |
10 |
8 9
|
wne |
⊢ 𝑤 ≠ ∅ |
11 |
|
vi |
⊢ 𝑖 |
12 |
|
cc0 |
⊢ 0 |
13 |
|
cfzo |
⊢ ..^ |
14 |
|
chash |
⊢ ♯ |
15 |
8 14
|
cfv |
⊢ ( ♯ ‘ 𝑤 ) |
16 |
|
cmin |
⊢ − |
17 |
|
c1 |
⊢ 1 |
18 |
15 17 16
|
co |
⊢ ( ( ♯ ‘ 𝑤 ) − 1 ) |
19 |
12 18 13
|
co |
⊢ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) |
20 |
11
|
cv |
⊢ 𝑖 |
21 |
20 8
|
cfv |
⊢ ( 𝑤 ‘ 𝑖 ) |
22 |
|
caddc |
⊢ + |
23 |
20 17 22
|
co |
⊢ ( 𝑖 + 1 ) |
24 |
23 8
|
cfv |
⊢ ( 𝑤 ‘ ( 𝑖 + 1 ) ) |
25 |
21 24
|
cpr |
⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } |
26 |
|
cedg |
⊢ Edg |
27 |
5 26
|
cfv |
⊢ ( Edg ‘ 𝑔 ) |
28 |
25 27
|
wcel |
⊢ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
29 |
28 11 19
|
wral |
⊢ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) |
30 |
10 29
|
wa |
⊢ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) |
31 |
30 3 7
|
crab |
⊢ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |
33 |
0 32
|
wceq |
⊢ WWalks = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |